IKSR-Expertengruppe HVAL

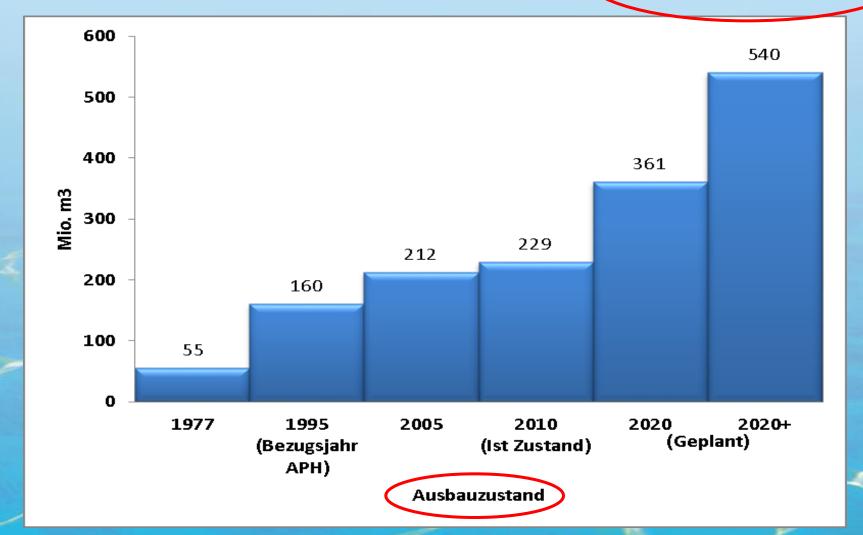
Untersuchungsergebnisse zur Umsetzung des Aktionsplans Hochwasser 1995 – 2010 einschließlich Vorausschau für 2020 sowie 2020+

Rüdiger Friese,
Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg
ruediger.friese@lubw.bwl.de
IKSR-Sekretariat: sekretariat@iksr.de

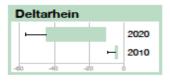
Internationale Kommission zum Schutz des Rheins

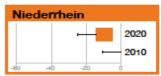
Commission Internationale pour la Protection du Rhin

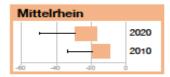
Internationale Commissie ter Bescherming van de Rijn

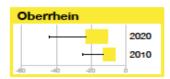

International Commission for the Protection of the Rhine

- Mandat durch die AG H
- > Bilanz des APH (i.d.R. in 5-Jahresschritten)
- Ermittlung der Wirkung von hochwasserreduzierenden Maßnahmen
- Die Untersuchungen umfassen ein Spektrum von häufigen bis seltenen (Extrem-) Hochwasserereignissen


"Ausbauzustand'

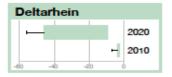


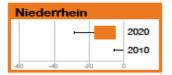


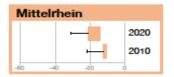

Minderung der Hochwasserscheitel

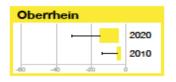
100-jährliche HW






Bei einem hundertjährlichen Hochwasser mögliche Hochwasserscheitelminderung in cm im Vergleich zum Bezugsjahr 1995


Vergleich Zustand 2010 und 2020



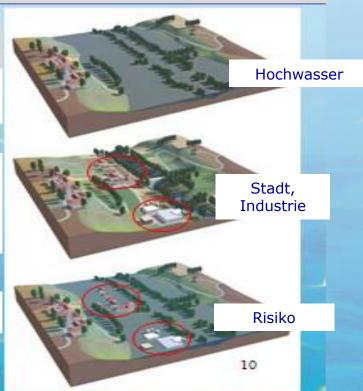
Extrem-HW

Bei einem extremen Hochwasser mögliche Hochwasserscheitelminderung in cm im Vergleich zum Bezugsjahr 1995 unter Berücksichtigung von Deichüberströmung

Ergebnisse IKSR-Bericht Nr. 199: Nachweis der Wirksamkeit von Maßnahmen zur Minderung der Hochwasserstände im Rhein

Hochwasserrisiko Allgemeine Beschreibung

Gefahr (z.B. Hochwasser)


Parameter Wahrscheinlichkeit, Wasserstand, Geschwindigkeit, Dauer

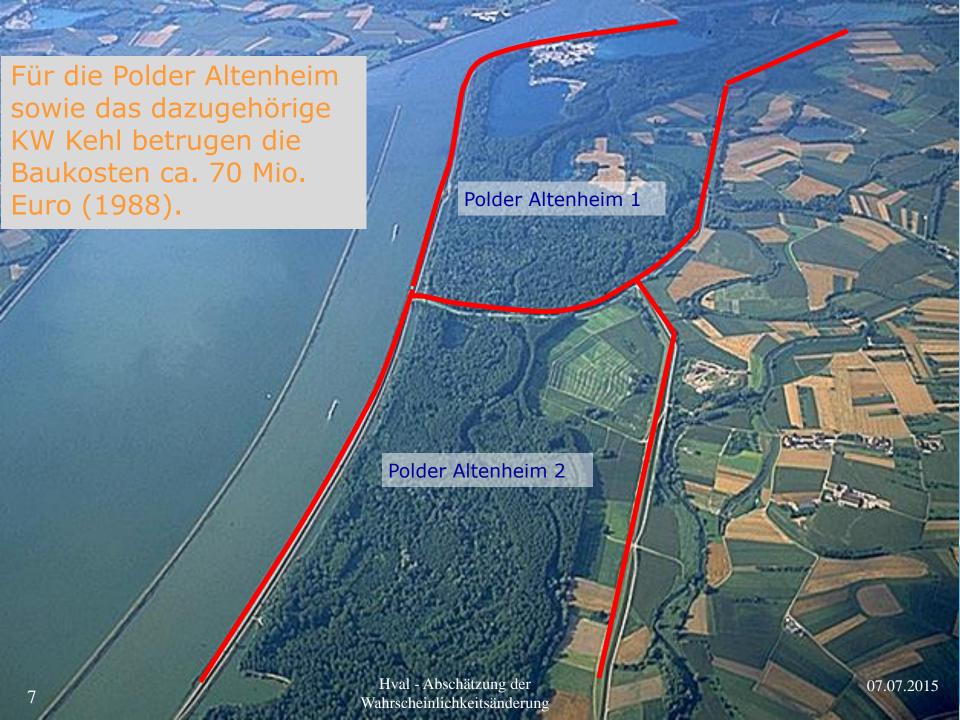
Vermögenswerte/Gegenstände/Schadenspotential (Verletzlichkeit, Vulnerabilität)

Hochwasserrisiko

Schutzgüter

Gesundheit

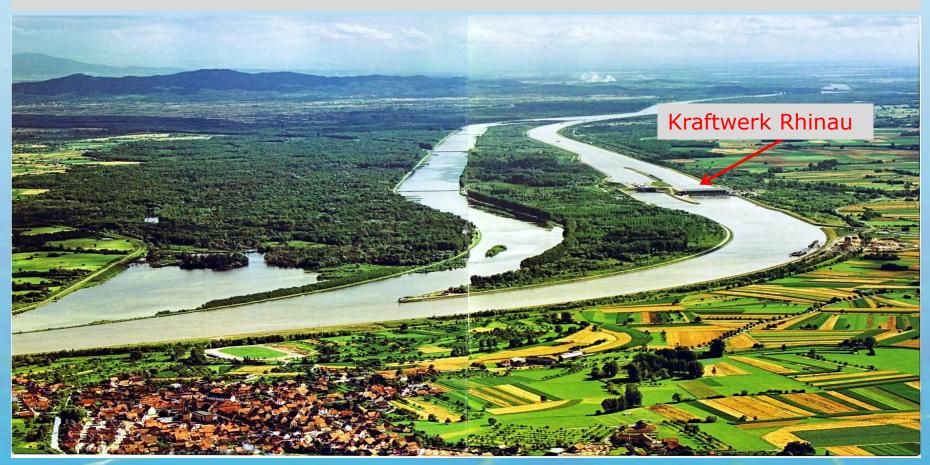
Umwelt


Kulturgüter

Wirtschaft

Nachweiskonzept für die Wirksamkeit von Maßnahmen im Rheinzugsgebiet und im Rhein (Handlungsziel 2 Aktionsplan Hochwasser) April 2009

- > Wirkung der Maßnahmen entlang des Rheins (2012)
- Hochwasserstatistik und Erfassung der Wahrscheinlichkeitsänderungen (2015)



Beispiele für Hochwasserbetroffenheit am Rhein:

- Zwischen Iffezheim und Bingen wären 700.000 Menschen betroffen (rechts- und linksrheinisch). Die potentiellen Schäden werden im zweistelligen Milliardenbereich beziffert.
- Am Mittelrhein ist bei nahezu jedem größeren HW mit größeren Schäden zu rechnen.
- Am Niederrhein wären bei einem Extremereignis etwa 1,2 Mio.
 Menschen betroffen. Das Schadenspotential wurde auf 17 Mrd.
 Euro berechnet.

Sonderbetrieb der Rheinkraftwerke

Durch eine gezielte Drosselung der Turbinendurchflüsse in der staugeregelten Strecke wird bei Hochwasser Wasser in den ehemaligen Rheinhauptstrom abgeleitet, wodurch diese Strecke als Retentionsraum wirken kann.

(Steuerbare) Polder

Gesteuerte Flutung von Poldern, die landeinwärts durch Dämme abgeschlossen sind

Polder Erstein / Frankreich

Kulturwehre

Mit den Kulturwehren Breisach und Kehl/Straßburg erfolgt die Rückhaltung im Rheinhauptbett und in den Vorländern

Dammrückverlegung, Vorlandabsenkung

Schaffung zusätzlicher Überflutungsflächen. Die Überflutung erfolgt bereits frühzeitig bei noch unkritischen Abflussverhältnissen.

Raum für den Fluss

Buhnenabsenkung als eine Beispielmaßnahme des Programms "Raum für den Fluss" (NL)

Die EG HVAL stellt der EG HIRI zur Verfügung:

Die **ermittelten Wahrscheinlichkeitsänderungen** für die Ausbauzustände 1995, 2005, 2010, 2020, 2020+ für

-HW-Ereignisse mit hoher Eintrittswahrscheinlichkeit (~HQ-10)

--> kleine Hochwasser

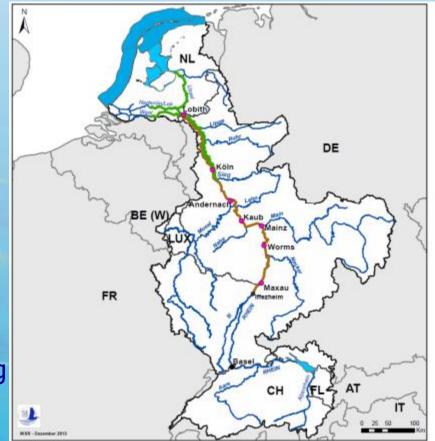
-HW-Ereignisse mit mittlerer Eintrittswahrscheinlichkeit (~HQ-100)

--> mittlere Hochwasser

-HW-Ereignisse mit niedriger Eintrittswahrscheinlichkeit (~HQ-Extrem

--> große Hochwasser

Hochwasserlage im Juni 2013 am nördlichen Oberrhein bei Bingen (Foto: SGD-Süd)
Hval - Abschätzung der 07.07.2015


Allgemeine Herangehensweise

Strecken am Rhein in denen die Wasserstandsabsenkung sowohl durch die Verringerung des (Scheitel-) Abflusses erfolgt <u>als auch</u> durch die Erweiterung des Flussbettes (dies entspricht einer Erhöhung der Abflusskapazität) - Streckenbezogene Auswertung

-> Niederrhein und Deltarhein

-> Ober- und Mittelrhein

Strecken am Rhein in denen die Wasserstandsabsenkung nur durch die Verringerung des (Scheitel-) Abflusses erfolgt

Hochwasserwahrscheinlichkeitsänderung:
Übersicht des Untersuchungsgebiets

Pegel
Pegelbezogene Auswertung
Streckenbezogene Auswertung
Sieg Wichtigste Nebenflüsse
Flüsse
Saen
Küstengewässer
Einzugsgebiet des Ribeins

- Pegelbezogene Auswertung

Datengrundlage und Methodik

Abschnittsweise zugeordnete Abflüsse für die 3 Wahrscheinlichkeitsszenarien

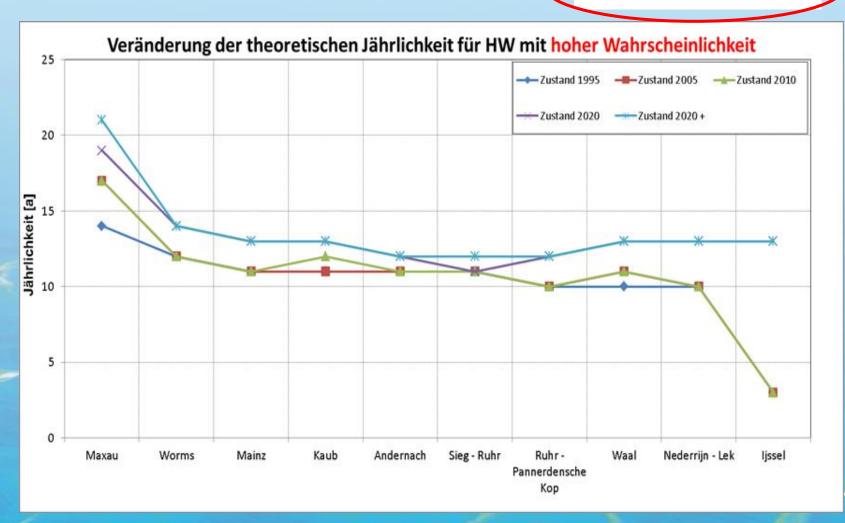
Rheinabschnitte	Hohe Wahrscheinlichkeit	Mittlere Wahrscheinlichkeit	Niedrige Wahrscheinlichkeit
Iffezheim bis Neckarmündung	4.100 m³/s	5.000 m³/s	6.500 m³/s
ab Neckarmündung	4.750 m³/s	6.000 m³/s	7.600 m³/s
ab Mainmündung	5.700 m³/s	7.900 m³/s	10.300 m³/s
ab Nahemündung	5.800 m³/s	8.000 m³/s	10.400 m³/s
ab Moselmündung	8.810 m³/s	11.850 m³/s	15.250 m³/s
ab Siegmündung	8.900 m³/s	11.700* m³/s	15.300 m³/s
ab Ruhrmündung	9.380 m³/s	12.200 m³/s	15.800 m³/s
ab Lobith	9.500 m³/s	12.700 m³/s	16.000 m³/s

^{*} Die Abflussdifferenz zwischen Moselmündung und Niederrhein ist durch Retentionseffekte zu erklären.

Gem. Abstimmung im Rahmen der koordinierten Umsetzung der HWRM-RL in der IFGE Rhein (Basis für den Rheinatlas)

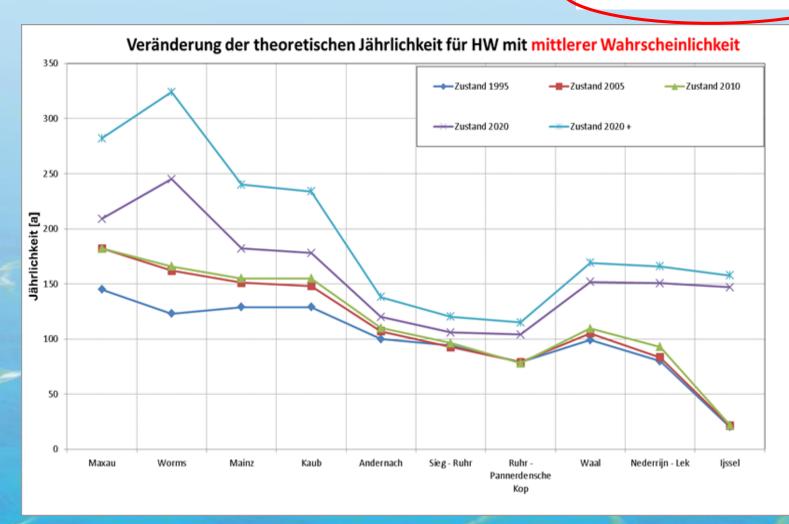
Datengrundlage und Methodik

Pegelbezogene Auswertung

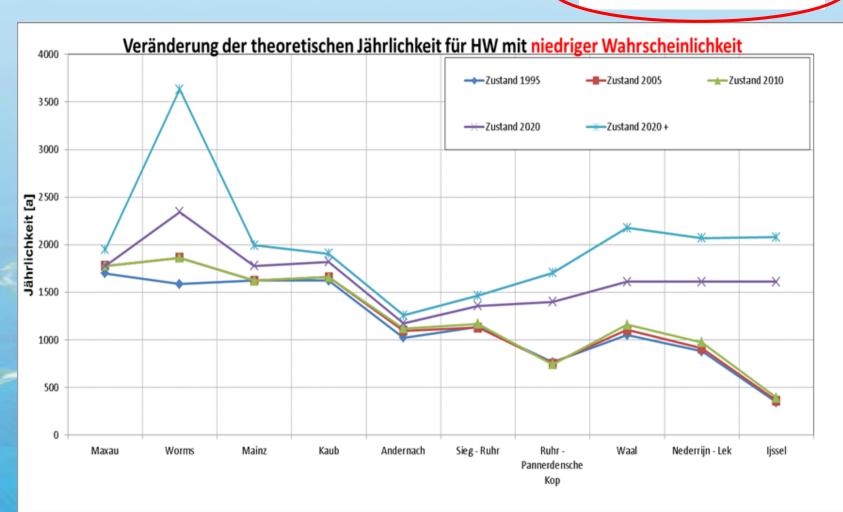

Abschätzung der Wahrscheinlichkeitsveränderung durch die **Abflussveränderung** (z.B. durch Polder).

Streckenbezogene Auswertung

- 1. Abschätzung der Erhöhung der Abflusskapazität (durch die flussbetterweiternden Maßnahmen).
- 2. Abschätzung der Wahrscheinlichkeitsveränderung aus <u>Kapazitäts</u>veränderung und <u>Abfluss</u>veränderung.



Kleine Hochwasser



Mittlere Hochwasser

Große Hochwasser

Pegel Worms:

Ausgeprägte Zuwächse an Rückhaltevolumen (Zustände 2020 und 2020plus) --> Große Veränderungen bei den ermittelten Jährlichkeiten.

- Pegel Andernach:

Durch den Einfluss der Mosel nimmt die Veränderung der ermittelten Jährlichkeiten deutlich ab.

Unterhalb der Siegmündung:

Größte Veränderungen der ermittelten Jährlichkeiten bei den Zuständen 2020 und 2020plus --> Fertigstellung der fließquerschnittserweiternden Maßnahmen bis 2020 sowie der Rückhaltemaßnahmen an Ober- und Niederrhein.

Niederländische Rheinzweige:

Große Unterschiede in den ermittelten theoretischen Jährlichkeiten aufgrund großer Unterschiede im Charakter der drei Rheinarme.

- --> Ca. 2/3 der Wassers bei Lobith wird abgeführt durch die Waal, 2/9 durch Nederrijn/Lek und 1/9 durch die IJssel.
- --> Wirksamkeit der verschiedenen Maßnahmen (z.B. großräumige Buhnenabsenkung in der Waal und Flutmulden sowie Deichrückverlegungen entlang der IJssel).

Vielen Dank für Ihre Aufmerksamkeit!

