

Internationale Kommission zum Schutz des Rheins Commission Internationale pour la Protection du Rhin Internationale Commissie ter Bescherming van de Rijn

Fiche de données sur les substances œstrogènes

La fiche de données est structurée comme suit :

- 1. Données générales sur les substances
- 2. Schéma de base sur l'analyse des flux de substances
- 3. Emissions (production et utilisation)
- 4. Concentrations dans le milieu naturel (concentrations et flux mesurés, flux calculés)
- 5. Critères d'évaluation (critères de qualité)
- 6. Approche stratégique (mesures de réduction potentielles)

Œstrogènes

1. Données générales sur les substances

Tableau 1 : Données générales sur les substances

Nom de la substance	n° CAS	Désignation commerciale (exemples)	Utilisation	Référence bibliographique
17-bêta-estradiol (E2)	50-28-2		- hormone naturelle (homme/animal) - thérapie hormonale	
Estrone (E1)	53-16-7		- hormone naturelle (homme/animal) - thérapie hormonale	
17a-éthinylestradiol (EE2)	57-63-6	Cilest (Janssen-Cilag), Femodeen (Schering), Harmonet (AHP), Lovette (AHP), Marvelon (Schering), Meliane (Schering), Mercilon (Schering), Microgynon 30 (Schering), Minulet (AHP), Modicon (Janssen-Cilag), Neocon (Janssen-Cilag), Neogynon 21 (Schering), Stediril 30 (AHP), Yasmin Schering), Binordiol (AHP), Gracial (Schering), Trigynon (Schering), Tri-Minulet (AHP), Trinordiol (AHP), Trinovum (Janssen-Cilag), Triodeen (Schering), Evra (Janssen-Cilag), Nuvaring (Schering)	hormone de synthèse utilisée à des fins contraceptives	www.anticonceptie.nl

2. Schéma de base sur l'analyse des flux de substances

Diagramme 2.1 : Analyse des flux de substances

PRODUCTION + UTILISATION société pharmaceutique animal autorisation homme production synthèse/utilisation synthèse importation hôpital ménages élevage matières fécales/urines Matières fécales/urines VOIE D'APPORT réseau d'égout STEP agriculture MILIEU eaux de surface eaux souterraines étranger eau potable

3. Emissions (production et utilisation)

Diagramme 3.1: Voies d'apport

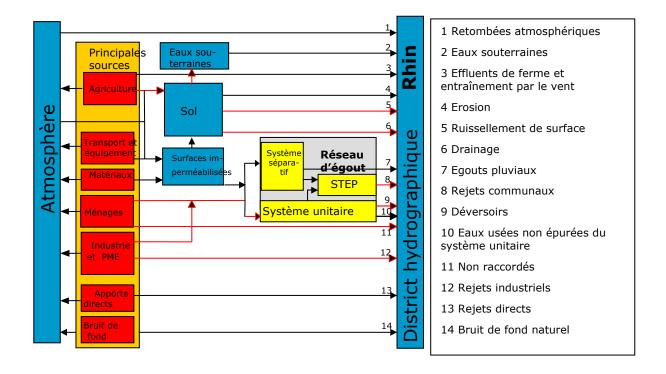


Tableau 3.1 : Quantités produites dans le bassin du Rhin

Nom de la substance	Α	СН	D	F	L	NL	Total	Référence bibliographique		
Nombre de sites de production implantés dans le bassin du Rhin rejetant des eaux usées										

Tableau 3.2 : Quantités utilisées au niveau national

Nom de la substance	Α	СН	D	F	L	NL	Total	Référence bibliographique				
	Quantités nationales totales utilisées (en kg/an)											
17-bêta- estradiol + estrone						1200* 17000**		Blok <i>et al</i> (2000)				
17-alpha- éthinylestrad iol						14*** 15****		Blok <i>et al</i> (2000) Aa <i>et al</i> (2008)				
		186 (moyenne 2000 et 2004)						IMS Health (2005)				
		4 (moyenne 2007, 2008 et 2009)						IMS Health (2010)				

^{*} Sur la base de 210 μ g d'hormones naturelles 17-bêta-estradiol et estrone par jour et par habitant dans les matières fécales/l'urine. Population totale NL = 16.358.000 habitants. Répartition des hormones naturelles par groupe démographique : enfant < 14 ans (2%), jeunes de 14-19 ans (4%), homme adulte (12%), femme adulte (36%), femme enceinte (44%), autres (2%).

^{**} Sur la base des excréments par tête de bétail. Répartition des hormones naturelles : truies d'élevage (23%), porcs d'engrais (1%), vaches gestantes (63%), vaches non-gestantes + jeune bétail (6%), poules pondeuses (3%) et juments (4%).

^{***} Sur la base de 30 μ g de 17-alpha-éthinylestradiol par jour et par personne pendant 21/28 jours par an. Nombre de personnes prenant la pilule = 11% de la population

^{****} Sur la base des prescriptions sur ordonnance via pharmacies en 2007.

Tableau 3.3 : Données mesurées (en ng/l) pour les voies d'apport

17-bêta-estradiol										
Voie d'apport	Etat rive- rain du Rhin	Nombre de mesures (n)	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique		
Retombées atmosphériques (1)										
Eaux souterraines (2)										
Effluents de ferme et										
entraînement par le vent (3)										
Erosion (4) Ruissellement de surface (5)										
Drainage (6)										
Egouts pluviaux (7)										
Rejets communaux (8)										
NL		34	29	< 0,8	< 0,8	< 0,8	2,3	Vethaak et al		
CH		48	30	< 0,4	0,5	3,2	17	(2002) STOWA (2005)		
A D		8	8	< LD	0,3	3,2	< LD	Micropoll DB Bafu (2009)		
Déversoirs (9)										
Eaux usées non épurées du système unitaire (10) NL		22	0	12,0	22,0	36,3	150	Vethaak et al (2002) STOWA (2005)		
Non raccordés (11)										
Rejets industriels (12)										
Rejets directs (13)										
Bruit de fond naturel (14)										

				Estrone				
Voie d'apport	Etat rive- rain du Rhin	Nombre de mesures (n)	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique
Retombées atmosphériques (1)								
Eaux souterraines (2)								
Effluents de ferme et entraînement par le vent (3)								
Erosion (4)								
Ruissellement de surface (5)								
Drainage (6)								
Egouts pluviaux (7)								
Rejets communaux (8) NL		43	14	< 0,3	2,9	5,3	28	Vethaak et al
CH A D		50 8	15 1	< 0,2 < LD	4,3 3,0	9,1	51 7,5	(2002) STOWA (2005) Micropoll DB Bafu (2009)
Déversoirs (9)								(2003)
Eaux usées non épurées du système unitaire (10) NL A		22 8	0	< 0,3 43	55 58	70,0	150 100	Vethaak et al (2002) STOWA (2005)
Non raccordés (11)								
Rejets industriels (12)								
Rejets directs (13)								
Bruit de fond naturel (14)								

17a-éthinylestradiol										
Voie d'apport	Etat rive- rain du Rhin	Nombre de mesures (n)	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique		
Retombées atmosphériques										
(1)										
Eaux souterraines (2)										
Effluents de ferme et										
entraînement par le vent (3)										
Erosion (4)										
Ruissellement de surface (5)										
Drainage (6)										
Egouts pluviaux (7)										
Rejets communaux (8)										
NL		43	34	< 0,3	< 0,3	1,0	6,1	Vethaak et al (2002)		
CH		47	41	< 0,3	1	0,7	2,8	STOWA (2005)		
A		8	8	< LD			< LD	Micropoll DB Bafu (2009)		
Déversoirs (9)										
Eaux usées non épurées du système unitaire (10)								Vethaak et al		
NL		22	12	< 0,3	< 0,3	1,6	9,2	(2002)		
A		8	8	< LD			< LD	STOWA (2005)		
Non raccordés (11)	+						·			
Rejets industriels (12)	+									
Rejets directs (13)	+									
Bruit de fond naturel (14)	+									
Láganda IID — limita da dass		1	1	l	1			1		

Tableau 3.5 : Pourcentages respectifs des différentes voies d'apport

Voie d'apport	17-bêta- estradiol NL*	Estrone NL	17-alpha- éthinyles- tradiol NL	17-bêta- estradiol Rhin**	Estrone Rhin	17-alpha- éthinylestradiol Rhin
Retombées atmosphériques (1)	-	-	-			
Eaux souterraines (2)	-	-	-			
Effluents de ferme et entraînement par le vent (3)	-	-	-			
Erosion (4)	-	-	-			
Ruissellement de surface (5)	?	?	-			
Drainage (6)	?	?	-			
Egouts pluviaux (7)	0 (0,3 %)	0 (0,3 %)	0 (0,3 %)			
Rejets communaux (8)	+ (99 %)	+ (99 %)	+ (99 %)	+ (97 %)	+ (97 %)	+ (97 %)
Déversoirs (9)	0 (0,3 %)	0 (0,3 %)	0 (0,3 %)	0 (1-2 %)	0 (1-2 %)	0 (1-2 %)
Eaux usées non épurées du système unitaire (10)	-	-	-			
Non raccordés (11)	0 (0,2 %)	0 (0,2 %)	0 (0,2 %)	0 (1-2 %)	0 (1-2 %)	0 (1-2 %)
Rejets industriels (12)	-	-	0 (0,1 %)			
Rejets directs (13)	0 (0,1 %)	0 (0,1 %)	0 (0,1 %)			
Bruit de fond naturel (14)	0 (0,1 %)	0 (0,1 %)	-			

Estimation effectuée à partir de l'exemple des Pays-Bas (*) et sur la base des médicaments à usage humain dans les Etats riverains du Rhin (**)

^{- =} le pourcentage de la voie d'apport est nul

^{0 =} la voie d'apport existe, mais son pourcentage est faible ou ne revêt qu'une importance locale

^{+ =} la voie d'apport représente un pourcentage important

^{? =} les apports bruts sont potentiellement élevés, mais sur la base d'un nombre restreint de mesures il semble que les apports dans les eaux de surface soient faibles ou ne revêtent qu'une importance locale.

4 Concentrations dans le milieu naturel (concentrations et flux mesurés, flux calculés)

4.1 Concentrations mesurées

Tableau 4.1.1 : concentrations mesurées dans le Rhin et quelques affluents (ng/l)

	17-bêta-estradiol												
Station de mesure	PK	Etat rive- rain du Rhin	Nombre de mesures	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique				
Cours princip	pal du	Rhin		•									
Lobith Maassluis		NL	13	13	< 0,8			< 1,0	Vethaak et al (2002)				
Affluents, ca	naux,	1											
Andijk Den Oever Nieuwegein Amsterdam IJmuiden		NL	26	26	< 0,8			< 0,8	Vethaak et al (2002)				
Autres eaux		CH A	106 261	92 244	< 0,2 < LD		0,9	10 0,31	Micropoll DB Bafu (2009)				

						Estrone			
Station de mesure	PK	Etat rive- rain du Rhin	Nombre de mesures	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique
						Rhin			
Lobith Maassluis		NL	13	12	< 0,3	<0,3	0,33	2,2	Vethaak et al (2002)
					P	Affluents			
Andijk Den Oever Nieuwegein Amsterdam IJmuiden		NL	26	22	< 0,3	< 0,3	0,40	2,1	Vethaak et al (2002)
Autres eaux		CH	130	99	< 0,1		0,8	5,0	Micropoll DB Bafu (2009)
		A	243	58	< LD			4,6	

					17a-é	thinylestrad	liol		
Nom de la station d'analyse	PK	Etat rive- rain du Rhin	Nombre de mesures	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique
						Rhin			
Lobith Maassluis		NL	13	13	< 0,3			< 0,3	Vethaak et al (2002)
Bad Honnef Düsseldorf Bimmen		D	223	223	< 100			< 100	Bergman (2010)
						Affluents		•	
Andijk Den Oever Nieuwegein Amsterdam IJmuiden		NL	26	26	< 0,3			< 0,3	Vethaak et al (2002)
Autres eaux		CH	113	110	< 0,1		1,1	2,0	Micropoll DB Bafu (2009)
		Α	261	257	< LD			0,33	
Menden Opladen Eppinghoven Münding Wesel		D	1365	1365	< 100			< 100	Bergman (2010)

Tableau 4.1.3 Concentrations pour les eaux souterraines et l'eau potable (ng/l)

					17-bêta-est	tradiol	
Etat rive- rain du Rhin	Nombre de mesures	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique
					Eaux souter	raines	
Α	112	108	< LD			0,21	
				Eau	u potable (filt	rat de rive)	
					 Eau potable (robinet)	
NL	22	22	< 0,8			< 0,8	Versteegh et al (2003) Versteegh et al (2007)

					Estrone					
Etat rive- rain du Rhin	Nombre de mesures	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique			
					Eaux souterrai	nes				
Α	109	89	< LD			1,6				
	Eau potable (filtrat de rive) Eau potable (robinet)									
NL	22	22	< 0,3	<u>-</u>		< 0,3	Versteegh et al (2003)			
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			, 0,5	Versteegh et al (2007)			

	17a-éthinylestradiol										
Etat rive- rain du Rhin	Nombre de mesures	Valeurs < LD	Minimum	Médiane	Moyenne	Maximum	Référence bibliographique				
	Eaux souterraines										
Α	112	111	< LD			0,94					
				Eau	ı potable (filtı	at de rive)					
					Eau potable (robinet)					
NL	22	22	< 0,3			< 0,3	Versteegh et al (2003) Versteegh et al (2007)				
-											

5 Critères d'évaluation (critères de qualité)

En 2002, l'UE a réalisé une évaluation scientifique de 12 perturbateurs endocriniens dont les hormones naturelles 17-bêta-estradiol, estrone et l'hormone de synthèse 17-alpha-éthinylestradiol. Les résultats de ces constatations figurent dans le rapport communautaire 'Study on the scientific evaluation of 12 substances in the context of endocrine disrupter priority list of actions (Johnson et al, 2002)'. On y trouve entre autres un aperçu de l'utilisation au niveau de l'UE, des données sur l'écotoxicité et les effets spécifiques des perturbateurs endocriniens, la présence dans les effluents de stations d'épuration et dans les eaux de surface et une estimation du risque environnemental obtenue par application d'une marge de sécurité entre les données mesurées et les données d'écotoxicité. Il en découle les conclusions suivantes pour les différentes substances :

17-bêta-estradiol

Il apparaît que les impacts perturbateurs hormonaux du 17β -estradiol sur la reproduction et la croissance des poissons se manifestent à des concentrations plus basses que ceux dus à une toxicité aiguë. Il ressort d'un jeu de données mixte de tests écotoxicologiques sur différents critères que la valeur seuil au-dessus de laquelle ces effets sont démontrés est de l'ordre de 5 à 25 ng/l. Les concentrations de 17β -estradiol dans les eaux de surface européennes sont généralement inférieures à 5 ng/l, voire même pour la plupart en deçà de 1 ng/l.

La marge de sécurité MOS (Margin Of Safety), c'est-à-dire la CSEO (**C**oncentration **s**ans **e**ffet **o**bservé) la plus basse de détection d'effets perturbateurs hormonaux (5-25 ng/l) divisée par les concentrations d'exposition en présence dans les eaux de surface (1-5 ng/l) est comprise entre 1 et 25 et est donc inférieure au niveau de risque tolérable fixé à 100. On peut donc en déduire que la présence du 17β -estradiol dans les eaux constitue un risque potentiel pour les poissons (et d'autres organismes vertébrés).

Estrone

Il apparaît que les impacts perturbateurs hormonaux de l'estrone sur la reproduction et la croissance des poissons se manifestent à des concentrations plus basses que ceux dus à une toxicité aiguë. Il ressort d'un jeu de données mixte de tests écotoxicologiques sur différents critères que la valeur seuil au-dessus de laquelle ces effets sont démontrés est de l'ordre de 1 à 10 ng/l. Les concentrations d'estrone dans les eaux de surface européennes évoluent dans une marge < 0,5 - 14 ng, la plupart des valeurs restant cependant très basses et étant inférieures à 5 ng/l.

La marge de sécurité MOS (Margin Of Safety), c'est-à-dire la CSEO la plus basse de détection d'effets perturbateurs hormonaux (1-10 ng/l) divisée par les concentrations d'exposition en présence dans les eaux de surface (0,5-14 ng/l) est comprise entre 0,07 et 20 et est donc inférieure au niveau de risque tolérable fixé à 100. On peut donc en déduire que la présence de l'estrone dans les eaux constitue un risque potentiel pour les poissons (et d'autres organismes vertébrés).

17a-éthinylestradiol

Il apparaît que les impacts perturbateurs hormonaux du 17a-éthinylestradiol sur la reproduction et la croissance des poissons se manifestent à des concentrations plus basses que ceux dus à une toxicité aiguë. Il ressort d'un jeu de données mixte de tests écotoxicologiques sur différents critères que la valeur seuil au-dessus de laquelle ces effets sont démontrés est de l'ordre de 0,3 à 1 ng/l. Les concentrations de 17β -éthinylestradiol dans les eaux de surface européennes sont généralement inférieures à la limite de détection comprise entre 0,1 et 0,3 ng/l, mais on relève cependant des valeurs de l'ordre de 1 ng/l.

La marge de sécurité MOS (Margin Of Safety), c'est-à-dire la CSEO la plus basse de détection d'effets perturbateurs hormonaux (0,3-1 ng/l) divisée par les concentrations d'exposition en présence dans les eaux de surface (0,1-1 ng/l) est comprise entre 1 et 10 et est donc inférieure au niveau de risque tolérable fixé à 100. On peut donc en déduire que la présence du 17β -éthinylestradiol dans les eaux constitue un risque potentiel pour les poissons (et d'autres organismes vertébrés). Il convient ici de signaler cependant que la fixation de ces marges de sécurité n'est que partiellement possible, du fait des limites de fiabilité des résultats d'analyses, les concentrations de 17a-éthinylestradiol détectées dans les eaux de surface étant inférieures ou proches de la limite de détection des méthodes d'analyse appliquées.

En résumé, on peut dresser le tableau suivant :

Substance	Données mesurées dans les eaux de surface	Effets endocriniens perturbateurs CSEO	Marge de sécurité du risque environnemental observé MOS (margin of safety, > 100) Lowest NOEC for endocrine mediated responses/environmental concentrations
17-bêta- estradiol	< 1—5 ng/l, la plupart des valeurs mesurées étant < 1 ng/l et proches de la limite de détection	5 – 25 ng/l	1 – 25
Estrone	< 0,5 -14 ng/l, la plupart des valeurs mesurées étant < 5 ng/l et proches de la limite de détection	1 – 10 ng/l	0,07 - >20
17a- éthinyl- estradiol	< 1 ng/l, la plupart des valeurs mesurées étant < à la limite de détection (0,3 - 1 ng/l)	0,3 - 1,0 ng/l	1 - 10

Conclusion de l'UE (Johnson *et al*, 2002) : A partir des données d'exposition disponibles et de la CSEO la plus faible pour les effets perturbateurs, il semble que les trois hormones peuvent présenter un risque pour les poissons dans le milieu aquatique.

Dans la directive cadre sur l'eau de l'UE, les substances 17β-estradiol et 17αéthinylestradiol sont considérées comme des substances susceptibles d'être intégrées dans la liste de substances (dangereuses) prioritaires. Aux fins de préparation de ces travaux, un groupe de travail européen 'Drafting Group on Review of WFD Priority Substances List' a rassemblé des données sur la toxicité et les a utilisées pour déterminer les normes de qualité environnementale CMA-NQE (concentrations maximales) et MA-NQE (moyenne annuelle) dans l'eau. Les résultats provisoires figurent dans les projets de dossiers (UK, 2009; UE, 2010) et devront être évalués et mis à jour par le groupe de travail dans le courant de 2010-2011. En se basant également sur les normes de qualité environnementale CMA-NQE et MA-NQE déterminées par le groupe de travail, l'UE devra décider si les hormones 17β-estradiol et 17a-éthinylestradiol seront incorporées ou non dans la liste des substances (dangereuses) prioritaires de la directive cadre sur l'eau. Pour le 17β-estradiol, la MA-NQE provisoire déterminée par le groupe de travail européen est de 0,27 ng/l et se base sur une CSEO_{reduced hatching success} (14 j, *Oryzias latipes*) de 2,7 ng/l avec un facteur de sécurité de 10 (Shioda and Wakabayashi (2000) tiré de UE, 2010). Jusqu'à présent, la CPSE (Concentration prévue sans effet) était de 1 ng/l (Young et al, 2010; ARCEM, 2003 tiré de Ivashechkin, 2006). Caldwell et al (2010) ont

réexaminé les données disponibles relatives à la toxicité des hormones sur le milieu aquatique et déterminé une CPSE pour le 17a-éthinylestradiol (Caldwell *et al.*, 2008). Pour le 17a-éthinylestradiol, la MA-NQE provisoire déterminée par le groupe de travail européen est de l'ordre de 0,016 – 0,2 ng/l (UE, 2010). Celle-ci est basée en premier lieu sur une CMEO (concentration minimale avec effet observé) de 0,32 ng/l dans un test 'life-cycle' avec Fathead minnow (*Pimephales promelas*). On constate un décalage du sex-ratio en faveur des femelles et une réduction de la fécondation des œufs. Cette CMEO correspond à une CSEO de 0,16 ng/l (Parrott and Blunt, 2005). Dans le cadre de la détermination de la MA-NQE, le groupe de travail européen a également tenu compte des résultats de tiers ayant généralement utilisé des approches différentes (Caldwell *et al.*, 2008/2010 ; Kase *et al.*, 2010 ; Legler *et al.*, 2007 ; van Vlaardingen *et al.*, 2007). Le groupe de travail n'a pas tenu compte des méthodes expérimentales impliquant 'l'induction de la vitellogénine' comme effet écologique.

Tableau 5.1 : critères de qualité existant à l'échelon national et international

Nom de la substance	Critères de qualité (ng/l)									Référence bibliogra- phique	
	NQE Rhin	Objectif de	Valeurs nationales Autres					Autres			
	référence CIPR								valeurs IAWR	Environmental Agency	
			Α	СН	D	F	L	NL			
17-bêta-estradiol (ng/l)										1	Young <i>et al</i> (2000)
Estrone (ng/l)										3-5	Young <i>et al</i> (2000)
17-alpha- éthinylestradiol (ng/l)										0,1	Young <i>et al</i> (2000)

Légende :

NQE = **n**orme de **q**ualité **e**nvironnementale IAWR = **I**nternationale **A**rbeitsgemeinschaft der **W**asserwerke im **R**heineinzugsgebiet (Comité international de travail des usines d'eau du bassin du Rhin)

Tableau 5.2 : relevé des données de toxicité

Substance	CSEO* chronique (ng/l)	CSEO aiguë (ng/l)	Espèce	Point névralgique	FS aigu	FS chro- nique	CPSE chronique (µg/l)	CPSE aiguë (µg/l)	Référence bibliographique
17-bêta- estradiol	10		Oncorhyn- chus mykiss; Rutilus rutilus	Induction de la vitellogénine					Routledge <i>et al</i> (1998)
17-bêta- estradiol	2,7		Oryzias latipes	verminderd broed succes / 14 d		10	2,7 x 10 ⁻⁴		Shioda and Wakabayashi (2000)
Estrone	1		Oncorhynchus mykiss	Induction de la vitellogénine					Thorpe <i>et al</i> (2003)
17-alpha- éthinylestr adiol	0,1		Pimephales promelas	Induction de la vitellogénine					Jobling <i>et al</i> (2004)
17-alpha- éthinylestr adiol	CMEO = 0,32 CSEO = CMEO/2		Pimephales promelas	Sex-ratio reproduction		10	0,16 x 10 ⁻⁴		Parrot and Blunt (2005)
	-,	460.000	Desmodesmus subspicatus	CE50/72 h	10			46	Schering AG (2002)

Légende : CSEO = **C**oncentration **s**ans **e**ffet **o**bservé

CMEO = **C**oncentration **m**inimale avec **e**ffet **o**bservé

FS = **F**acteur de **s**écurité

CPSE = Concentration prévue sans effet

* Johnson *et al* (2002) et Legler *et al* (2007) indiquent différents points névralgiques pour les effets hormonaux tels que l'impact sur la reproduction, les modifications dans les gonades et l'induction de la vitellogénine. Le groupe de travail européen (2010) n'a pas considéré le point névralgique 'induction de la vitellogénine' dans les méthodes expérimentales.

6. Approche stratégique (mesures de réduction potentielles)

Tableau 6.1 : Mesures potentielles à la source

Mesure	Effet/évaluation de la mesure	Substances indicatives concernées	7	Temps req	Référence bibliographique	
			< 5 ans	> 5 ans - < 10 ans	> 10 ans	
a) optimiser les processus de production pour prévenir les flux pollués d'eaux usées et traiter séparément les flux d'eaux usées contenant de fortes concentrations de polluants (entreprise pharmaceutique, secteur de la santé, étables et entreprises de transformation du fumier)	Meilleur rendement et moindres coûts en cas d'épuration de flux d'eaux usées à fortes concentrations	Estrone (E1) 17-bêta-estradiol (E2)	X	Х	Х	Derksen en Roorda (2005)
b) Analyse des voies d'apport de E1 et E2 par le biais d'engrais d'animaux de rente dans les eaux de surface (ruissellement et lessivage) et les eaux souterraines	Indications sur la voie d'apport et la décomposition de E1 et E2 ainsi que sur le risque en découlant pour les eaux souterraines et les eaux de surface. Approches envisageables pour des mesures visant à réduire les émissions	Estrone (E1) 17-bêta-estradiol (E2)	х			Derksen en Roorda (2005)
c) Respect des zones non fertilisées le long des eaux de surface lors de l'épandage d'engrais	On prévient ainsi autant que possible le ruissellement de E1 et E2 dans les aux de surface	Estrone (E1) 17-bêta-estradiol (E2)		Х		Derksen en Roorda (2005)
d) Innovations dans la production de produits contraceptifs afin d'abaisser la contamination par l'EE2	On peut limiter la pollution du milieu aquatique en utilisant des matières actives biodégradables ou en améliorant la méthode/le dosage administré.	17a-éthinylestradiol (EE2)			X	Derksen en Roorda (2005)
e) Supprimer les raccordements défectueux de logements au réseau d'eaux pluviales et limiter les excréments canins rejoignant ce réseau	Réduction de la pollution du milieu aquatique par les matières fécales	Estrone (E1) 17-bêta-estradiol (E2)	Х	Х	Х	Derksen en Roorda (2005)
f) Remettre aux pharmacies les pilules contraceptives non utilisées ou les stocker comme 'petits déchets chimiques' ménagers	La remise de produits non utilisées permet d'éviter leur rejet dans les eaux usées ménagères.	17a-éthinylestradiol (EE2)	Х			Derksen en Roorda (2005)

Tableau 6.2 : Moyens potentiels de réduction des apports pour les différentes voies d'apport

Voie d'apport	Impor- tance	Mesure	Effet/évaluation de la mesure	Substances indicatives éliminées	٦	Réfé- rence biblio- gra- phique		
Retombées atmosphériques (1)	0	-			< 5 ans	> 5 ans - < 10 ans	> 10 ans	
Eaux souterraines (2)	1	Supprimer les fuites dans les réseaux d'égout	Faible effet : amélioration locale de la qualité de l'eau			х	Х	
Effluents de ferme et entraînement par le vent (3)	0	-						
Erosion (4)	0	-						
Ruissellement de surface (5)		i) Analyse des voies d'apport de E1 et E2 via engrais	Effet moyen : apports bruts					
Drainage (6)	2	d'animaux de rente dans les eaux de surface (ruissellement et lessivage) et les eaux souterraines ii) Respect des zones non fertilisées le long des eaux de surface lors de l'épandage d'engrais	élevés, pollution éventuelle du milieu aquatique Stratégie d'anticipation au travers de mesures de réduction des apports	Estrone, 17-bêta- estradiol	i ii	ii		
Egouts pluviaux (7)	1	Supprimer les raccordements défectueux de logements au réseau d'eaux pluviales et limiter les excréments canins rejoignant ce réseau	Faible effet : amélioration locale de la qualité de l'eau	Estrone, 17-bêta- estradiol, 17a- éthinylestradiol	Х	Х	х	
Rejets communaux (8)	3	iii) optimiser les processus de production pour prévenir les flux d'eaux usées iv) Traitement distinct des effluents d'eaux usées renfermant de fortes concentrations avant rejet dans les réseaux d'égouts iv) Meilleure épuration des	Effet important Réduction sensible d'un grand nombre de substances contenues dans les eaux usées des entreprises et du secteur sanitaire ou provenant du	Estrone, 17-bêta- estradiol, 17a- éthinylestradiol	iii iv	iii iv V	iiiii	

Voie d'apport	Impor- tance Mesure		Effet/évaluation de la mesure	Substances indicatives éliminées	Temps requis			Réfé- rence biblio- gra- phique
		STEP grâce à l'utilisation de la filtration sur charbon actif	réseau urbain					
Déversoirs (9)	1	Séparation des eaux pluviales s'écoulant de surfaces imperméabilisées	Faible effet : Amélioration de la qualité locale de l'eau	Estrone, 17-bêta- estradiol, 17a- éthinylestradiol		X	X	
Eaux usées non épurées du système unitaire (10)	0	-						
Non raccordés (11)	1	Raccorder au réseau public ou installation de systèmes d'épuration individuels dans le cas d'habitats clairsemés	Faible effet : Amélioration de la qualité locale de l'eau	Estrone, 17-bêta- estradiol, 17a- éthinylestradiol		Х		
Rejets industriels (12)	1	Optimiser les processus de production visant à prévenir les flux (partiels) d'eaux usées des entreprises (de transformation du fumier) et épuration de ces flux	Effet faible à moyen: Hausse des émissions due à la fermentation du fumier aux fins de production d'énergie	Estrone, 17-bêta- estradiol, 17a- éthinylestradiol	х	х		
Rejets directs (13)	1	Collecte et remise d'eaux usées ménagères (bateaux)	Faible effet : Amélioration de la qualité locale de l'eau	Estrone, 17-bêta- estradiol, 17a- éthinylestradiol		Х	Х	
Bruit de fond naturel (14)	0	-			-	_	_	

Légende :

Pourcentage de la voie d'apport sur le total des apports dans le Rhin

0 = sans importance

1 = de faible importance (apport < 10%)

2 = de moyenne importance (apport 10 - 50 %)

3 = de grande importance (apport > 50 %)

Tableau 6.3 : éléments à utiliser pour la stratégie globale de la CIPR

Mesure	Temps requis						
Mesure	< 5 ans	> 5 ans - < 10 ans	> 10 ans				
En complément de la directive communautaire sur les eaux urbaines résiduaires, recommander aux autorités nationales et à l'UE de perfectionner globalement les processus d'épuration des STEP et d'appliquer des techniques d'épuration plus poussées aux STEP dans les parties du bassin du Rhin où les rejets en sortie de station sont significatifs par rapport au milieu récepteur.	X	X	X				
Recommander aux autorités nationales et à l'UE d'analyser plus en détail la propagation dans les eaux de surface et les eaux souterraines des œstrogènes naturels contenus dans les engrais animaux et leurs impacts négatifs sur le milieu aquatique.	X						
Recommander aux autorités nationales et à l'UE d'identifier les éléments clés sur lesquels agir pour abaisser les pressions des œstrogènes naturels sur le milieu aquatique, comme par ex. la mise en place de bandes riveraines non fertilisées ou l'épandage de la fraction aqueuse sur les sols agricoles après la fermentation du fumier.	X	X					

Sources bibliographiques

Aa NGFM van der, GJ Kommer, GM de Groot en JFM Versteegh (2008). Geneesmiddelen in bronnen voor drinkwater. Monitoring, toekomstig gebruik en beleidsmaatregelen. RIVM-rapport 609715002/2008.

Adler P, T Steger-Hartmann, W Kalbfuss (2001). Vorkommen natürlicher und synthetischer östrogener Steroide in Wässern des süd- und mitteldeutschen Raumes. Acta hydrochimica et hydrobiologica 29 (4), 227-241.

ARCEM (2003). Hormonwirkzame Stoffe in Österreichs Gewässern – ein Risiko? Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft.

Bergman S. (2010). Persoonlijke mededeling, mail dd 9 april 2010.

Blok J en MAD Wösten (2000). Herkomst en lot van natuurlijke oestrogenen in het milieu. RIWA.

Caldwell DJ, F Mastrocco, TH Hutchinson, R Laîgne, D Heijerick, C Janssen, PD Anderson and JP Sumpter (2008). Derivation of an aquatic Predicted No-Effect Concentration for the synthetic hormone 17alpha-Ethinyl Estradiol. Environmental Science & Technology 42(19): 7046-7054.

Caldwell DJ, F Mastrocco, E Nowak, J Johnston, H Yekel, D Pfeiffer, M Hoyt, BM DuPlessie and PD Anderson (2010). An assessment of potential exposure and risk from estrogens in drinking water. Environmental Health Perspectives 118(3): 338-344.

Derksen JGM en JH Roorda (2005). Ketenanalyse humane en veterinaire geneesmiddelen in het watermilieu. Grontmij-rapport 13/99058421/JW.

IMS Health (2005). Verkaufszahlen von Pharmazeutika in der Schweiz 2000 und 2004.

IMS Health (2010). Verkaufszahlen von Pharmazeutika in der Schweiz 2007, 2008 und 2009

Ivashechkin P (2006). Elimination organischer Spurenstoffe aus kommunalem Abwasser Von der Fakultät für Bauingenieurwesen der Rheinisch-Westfälischen Technische Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurswissenschaften genehmigte Dissertation.

Micropoll Datenbank BAFU (2009). Datenbank des Bundesamts für Umwelt (Schweiz) mit Monitoringdaten aus der ganzen Schweiz.

Jobling S, D Casey, T Rodgers-Gray, J Oehlmannd, U Schulte-Oehlmann, S Pawlowski, T Baunbeck, AP Turner, & CR Tyler (2004). Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent. *Aquatic Toxicology*, 66, 207–222.

Johnson I en P Harvey (2002). Study on the scientific evaluation of 12 substances in the context of endocrine disrupter priority list of actions. European Commision. WRc-NSF report: UC 6052.

Kase R and M Junghans (2010). A probabilistic approach to find a reliable EQS for 17-a-Ethinylestradiol (EE2)+ Consideration of meeting comments (revised version 21.09.2010). Presentation at the Multilateral Meeting 17th September 2010.

Montforts MHMM, GBJ Rijs, JA Staeb en H Schmitt (2007). Diergeneesmiddelen en natuurlijke hormonen in oppervlaktewater van gebieden met intensieve veehouderij. RIVM-rapport 601500004/2007.

Kuch HM, K Ballschmiter (2001). Determination of endocrine-disrupting phenolic compounds and estrogens in surface and drinking water by HRGC-(NCI)-MS in the picogram per liter range. Environ Sci Technol 35(15), 3201-3206.

Legler J, T Hamers, JW Wegener en MH Lamoree (2007). 17a-ethinyloestradiol als probleemstof voor het watermilieu. IVM-rapport E-07/18.

Parrot JL and BR Blunt (2005). Life-cycle exposure of fathead minnows (*Pimephales promelas*) to an ethinylestradiol concentration below 1 ng/L reduces egg fertilization success and demasculinizes males. Environ. Toxicol. 20(2): 131-41.

Rijkswaterstaat (2009). Effluenten rwzi's, regenwaterriolen, niet aangesloten riolen, overstorten en IBA's. Factsheet emissieregistratie.

Routledge EJ, D Sheahan, C Desbrow, GC Brighty, M Waldock en JP Sumpter (1998). Identification of estrogenic chemicals in STW effluent. In vivo responses in trout and roach. Environ Sci Technol 34, 1521-1528.

Schering AG (2002). Growth inhibition test of ethinylestradiol (ZK4944) on the green algae *Desmodesmus subspicatus* Report A12518.

Shioda T and M Wakabayashi (2000). "Effect of certain chemicals on the reproduction of medaka (Oryzias latipes)." Chemosphere 40(3): 239-243.

STOWA (2005). Verkennende monitoring van hormoonverstorende stoffen en pathogenen op rwzi's met aanvullende zuiveringstechnieken. STOWA-rapport 2005-32.

Thorpe KL, R Cummings, T Hutchinson, M Scholze, G Brighty, JP Sumpter, & CR Tyler (2003). Relative potencies and combination effects of steroidal estrogens in fish. *Environ. Sci. Techno.*, *37*, 1142-1149.

UK (2009). Proposed EQS for Water Framework Directive Annex VIII substances: 17a-Ethinyloestradiol. Science Report – Final Report (July 2009) – Restricted.

Vethaak AD, GBJ Rijs, SM Schrap, H Ruiter, A Gerritsen and J Lahr (2002). Estrogens and xeno-estrogens in the aquatic environment of the Netherlands. Occurrence, potency and biological effects. RIZA/RIKZ-report 2002.001.

Vlaardingen PLA van, LRM de Poorter, RHLJ Fleuren, PJCM Janssen, CJAM Posthuma-Doodeman, CJAM Verbruggen and JH Vos (2007). Environmental risk limits for twelve substances, prioritised on the basis of indicative risk limits, RIVM-report 601782003/2007.

Wenzel, A, J Müller en T Ternes (2003). Study on endocrine disrupters in drinking water. IME/ESWE rapport ENV.D.1/ETU/2000/0083.

Young, WF, P Whitehouse, I Johnson en N Sorokin (2002). Predicted-No-Effect Concentratiosn (PNECs) for Natural and Synthetic Steroid Oestrogens in Surface Waters. Technical Report Environmental Agency P2-TO4/1.

Liens

www.anticonceptie.nl www.kompendium.ch