Inventaire
des zones d'intérêt écologique
sur le Rhin et première étape pour une mise
en réseau de biotopes
Editeur: Commission Internationale pour la Protection du Rhin (CIPR)
secrétariat technique et scientifique
Postfach 309
D-56003 Koblenz
téléphone: (0261) 1 24 95
télécopie: (0261) 3 65 72
courrier électronique: IKSR@rz-online.de

Date de publication: janvier 1998

Rapport du Groupe de travail 'Ecologie'

Services associés:
Office fédéral de l'Environnement, des Forêts et du Paysage, Berne; Conseil Supérieur de la Pêche, Montigny-les-Metz; Agence de l'Eau Rhin-Meuse, Moulins-les-Metz; Direction Régionale de l'Environnement d'Alsace, Strasbourg; Service de la Navigation de Strasbourg, Strasbourg; Gewässerdirektion südlicher Oberrhein/Hochrhein, Lahr; Landesumweltamt Nordrhein-Westfalen, Essen; Ministerium für Umwelt und Forsten des Landes Rheinland-Pfalz, Mainz; Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit, Bonn/Berlin; Bundesanstalt für Gewässerkunde, Koblenz/Berlin; Bundesamt für Naturschutz, Bonn; Administration des Eaux et Forêts, Luxembourg; Rijkswaterstaat, RIWA, Leidschendam/Arnhem; Rijksinstituut voor Volksgezondheid en Milieuzorg, Bilthoven; Ministerie van Landbouw, Natuurbeheer en Visserij, Directie Oost, Deventer.

Conception de la couverture: AD, Das Werbeteam, Sankt Augustin
Photo: Gewässerdirektion südlicher Oberrhein/Hochrhein, Lahr
Inventaire
des zones d'intérêt écologique sur le Rhin
et première étape pour une mise en réseau de biotopes
STRUCTURE

Préface 5

1. Introduction 6
 1.1 Situation de départ 6
 1.2 Description des problèmes 7
 1.3 Objectif du rapport et espace géographique à considérer 8

2. État de référence et objectifs de développement 9

3. Stratégie 12

4. Examen par tronçon du Rhin 14
 4.1 Haut Rhin 14
 4.1.1 Description générale de l'état écologique actuel 14
 4.1.2 Estimation écologique de l'état actuel 15
 4.1.3 Objectifs de développement 17
 4.1.4 Principales mesures de restauration écologique 19
 4.2 Rhin supérieur 25
 4.2.1 Rhin supérieur méridional: de Bâle à Ifezheim 27
 4.2.1.1 Description générale de l'état écologique actuel 27
 4.2.1.2 Estimation écologique de l'état actuel 29
 4.2.1.3 Objectifs de développement 32
 4.2.1.4 Principales mesures de restauration écologique 36
 4.2.2 Rhin supérieur septentrional: d'Ifezheim à Bingen 39
 4.2.2.1 Description générale de l'état écologique actuel 42
 4.2.2.2 Estimation écologique de l'état actuel 43
 4.2.2.3 Objectifs de développement 43
 4.2.2.4 Principales mesures de restauration écologique 45
 4.3 Rhin moyen 47
 4.3.1 Description générale de l'état écologique actuel 47
 4.3.2 Estimation écologique de l'état actuel 47
 4.3.3 Objectifs de développement 48
 4.3.4 Principales mesures de restauration écologique 48
4.4 Rhin inférieur

4.4.1 Description générale de l'état écologique actuel
4.4.2 Estimation écologique de l'état actuel
4.4.3 Objectifs de développement
4.4.4 Principales mesures de restauration écologique

4.5 Delta du Rhin

4.5.1 Description générale de l'état écologique actuel
4.5.2 Estimation écologique de l'état actuel et objectifs de développement
4.5.3 Principales mesures de restauration écologique
4.5.4 Description de tronçons fluviaux dans le delta du Rhin

Annexe

Communiqué de la 11ème Conférence ministérielle sur le Rhin - extrait
Inventaire des zones d'intérêt écologique sur le Rhin et première étape pour une mise en réseau de biotopes

Préface

Pour améliorer durablement l’écosystème fluvial du Rhin, il est nécessaire de définir une stratégie à grande échelle et d’établir un plan global. La situation écologique actuelle du Rhin depuis la sortie du lac de Constance jusqu’à son embouchure dans la mer du Nord constitue le point de départ de ces actions. Le présent rapport fait la description des zones d’intérêt écologiques sur le Rhin, dont on trouvera également la représentation cartographique dans l’atlas du Rhin publié simultanément.

Des projets locaux de renaturation sur le Rhin ne suffisent pas en soi. De nombreuses actions communes s’imposent pour restaurer l’écosystème et ses interactions en vue d’une mise en réseau des biotopes. L’état de référence et l’objectif de développement définis pour la plaine alluviale rhénane et le lit du fleuve concrétisent l’orientation que doivent prendre les futures actions. Sont en outre présentées les activités spécifiques prévues pour les différents tronçons du Rhin.

La 11ème Conférence ministérielle sur le Rhin de 1994 avait déjà posé les fondements de cette idée en se prononçant pour une protection moderne et globale de la nature, du paysage et des eaux prenant en compte, selon une approche intégrée, les intérêts en présence le long du fleuve. Pour toute décision, il convient donc de considérer, en plus des intérêts écologiques, ceux relatifs à la protection contre les inondations, à la navigation, à l’exploitation hydroélectrique et à d’autres domaines encore, dans le but d’assurer un usage avisé et durable des ressources en eaux.

Les prochaines étapes pour la mise en réseau de biotopes sur le Rhin seront les suivantes:

- définir des critères pour la mise en place du réseau de biotopes le long du Rhin
- identifier et déterminer les mesures nécessaires pour atteindre les objectifs de développement
- définir un calendrier détaillé
- procéder au suivi des résultats
- faire ressortir les besoins de recherche.

1. Introduction

1.1 Situation de départ

Depuis quatre décennies, la protection des eaux sur le Rhin consiste à réduire, par des mesures techniques, les polluants provenant de rejets continus d'eaux usées. Toutefois, à elle seule, l'amélioration de la qualité des eaux ne suffit pas pour conserver un écosystème intact ou le restaurer. Les mesures écologiques se fondent sur le Programme d'action Rhin, adopté en 1987, dont le principal objectif est le suivant:

L'écosystème du Rhin doit retrouver un état tel que des espèces supérieures jadis présentes dans le Rhin, mais aujourd'hui disparues (p.ex. le saumon) puissent se réimplanter dans ce grand fleuve européen.

Sur cette base, la CIPR a élaboré en 1991 le "Projet Ecologique Global pour le Rhin" avec ses deux principaux domaines:

1. restauration du cours principal du fleuve, véritable épine dorsale de l'ensemble de l'écosystème "Rhin", et de ses principaux affluents considérés comme biotopes pour les poissons grands migrateurs
2. protection, conservation et amélioration des zones rhénanes d'intérêt écologique et de la plaine du Rhin pour accroître la diversité des espèces animales et végétales qui y vivent.

L'amélioration de l'écosystème a également été intégrée aux objectifs (article 3) de la nouvelle Convention sur la protection du Rhin qui se trouve à l'état de projet.

Assurer le développement durable de l'écosystème Rhin, en particulier

a) en préservant et améliorant la qualité des eaux du Rhin, y compris celle des matières en suspension et des sédiments, notamment en veillant à

- prévenir, réduire ou supprimer dans la mesure du possible les pollutions par les substances nuisibles et les nutriments d'origine ponctuelle (p.ex. industrielle et urbaine), d'origine diffuse (p.ex. agricole et en provenance du trafic) - également celles provenant des eaux souterraines - ainsi que celles dues à la navigation

- assurer et améliorer la sécurité des installations et prévenir les accidents

b) en protégeant les populations d'organismes et la diversité des espèces et en réduisant la contamination par des substances nuisibles dans les organismes
c) en préservant, améliorant et restaurant la fonction naturelle des eaux; en assurant une gestion des débits qui prenne en compte le flux naturel des matières solides et qui favorisent les relations entre le fleuve, les eaux souterraines et les zones alluviales; en préservant, protégeant et réactivant les zones alluviales comme zones d’épandage naturel des crues.

d) en préservant, améliorant et restaurant des habitats aussi naturels que possible pour la faune et la flore sauvages dans l’eau, le fond et sur les rives du fleuve ainsi que dans les zones adjacentes, y compris en améliorant l’habitat des poissons et en rétablissant leur libre circulation.

e) en assurant une gestion des ressources en eau rationnelle et respectueuse de l’écologie.

f) en tenant compte des exigences écologiques lorsque sont mises en œuvre des mesures techniques d’aménagement du fleuve, p.ex. pour la protection contre les inondations, la navigation et l’exploitation hydroélectrique.

1.2 Description des problèmes

Il existait initialement sur le cours du Rhin environ 8.000 km² de surfaces alluviales inondables naturelles, dont la moitié située dans la zone deltaïque du Rhin. 85% des zones alluviales inondables du Rhin supérieur et du Rhin inférieur ont disparu. Dans la zone deltaïque, ces surfaces ne sont plus disponibles à grande échelle à cause du développement de l’urbanisation.

Les habitats typiques du milieu alluvial et les biocénoses adaptées ont été détruits et/ou fortement modifiés du fait de cette évolution. Cette modification est notamment due à l’interruption des processus hydrodynamiques typiques du milieu alluvial.

Par ailleurs, les différentes espèces requièrent des habitats divers. Les habitats ne peuvent toutefois remplir leur fonction que s’ils présentent une taille minimale. Ainsi, le nombre d’espèces dans un habitat dépend de sa surface ainsi que de la diversité et de la structure du biotope. Si l’on souhaite stopper la disparition d’espèces, il est indispensable de disposer d’habitats suffisamment grands ou d’une mosaïque diversifiée d’habitats. Les espèces animales typiques du milieu alluvial actuellement les plus menacées sont justement celles qui nécessitent de grandes surfaces. Par ailleurs, les habitats doivent être reliés les uns aux autres. Il est indispensable qu’il existe le long du fleuve des habitats similaires pas trop éloignés les uns des autres, afin que dans de grands espaces vitaux, comme un hydro système fluvial, il n’y ait pas d’isolement génétique des populations. Pour la mise en réseau de biotopes sur le Rhin, la végétation aux abords des rives et dans les zones alluviales (p.ex. les forêts alluviales à bois tendres et à bois durs) joue un rôle décisif. On obtient déjà des résultats positifs lorsqu’on prolonge la rive comme zone de contact étroit entre l’eau et les terres.

Il convient de prendre, sur le Rhin également, des mesures adéquates afin de stopper la disparition progressive et généralisée d’espèces due à la perte d’habitats appropriés. Jusqu’à présent, on a accordé une bien plus grande importance à tous les usages liés au fleuve et à l’espace fluvial qu’au fonctionnement naturel de l’hydro système. Il est indispensable de combiner les mesures envisagées pour mettre en place le réseau de biotopes et celles prévues pour améliorer la prévention des crues, étant donné que les mêmes espaces, les actuelles et anciennes surfaces inondables du Rhin, sont au centre du Plan d’action contre les inondations.
1.3 Objectif du rapport et espace géographique à considérer

L'atlas du Rhin a été élaboré sur la base d'un vaste inventaire des zones d'intérêt écologique. Ont été recensées les zones protégées, les zones reconnues dignes d'être protégées et les surfaces requises pour la mise en réseau des biotopes.

L'espace géographique à considérer comprend le corridor fluvial, y compris les actuelles et anciennes zones inondables de la Bande rhénane (basse plaine alluviale du Rhin) présentant un potentiel de développement écologique. En concertation avec le Groupe de projet 'Plan d'action contre les inondations', l'espace géographique à considérer a été défini comme suit:

- haut Rhin: fond de la vallée avec les zones inondables naturelles, y compris les zones d'intérêt écologique limitrophes jouant un rôle important dans le cadre de la mise en réseau
- Rhin supérieur: champ d'inondation naturel selon la "Monographie des Rheinstroms" de 1889
- Rhin moyen: fond de la vallée avec les zones inondables naturelles, y compris les zones d'intérêt écologique limitrophes jouant un rôle important dans le cadre de la mise en réseau
- Rhin inférieur: champ d'inondation naturel par rapport à la crue de 1926
- Delta du Rhin: champ d'inondation existant, y compris les zones d'intérêt écologique limitrophes et/ou les zones limitrophes jouant un rôle important dans le cadre de la rétention des crues (cf. explications figurant au chapitre 4.5).

L'objectif du présent rapport est de

- définir un état de référence pour le Rhin dans son ensemble
- définir des objectifs de développement qui tiennent compte des spécificités géographiques naturelles des différents tronçons du Rhin.

Pour atteindre les objectifs de développement, une première étape a consisté à

- dresser l'inventaire des zones d'intérêt écologique et
- recenser les plans de renaturation déjà existants.

Les zones d'intérêt écologique et les plans de renaturation sont cartographiés dans l'atlas du Rhin. Celui-ci doit servir de base d'évaluation et de planification et faire ressortir les futures actions à engager.
2. Etat de référence et objectif de développement pour le Rhin

On entend en général par état de référence l’état naturel potentiel actuel d’un cours d’eau. Il repose sur le principe selon lequel les fonctions naturelles de l’écosystème se conservent lorsque l’on se trouve dans un état quasi naturel sans perturbations d’origine anthropique. Dans un milieu marqué par l’homme (y compris les modifications anthropiques irréversibles), cet état de référence décrit un état qui donne l’orientation à suivre. Le Rhin ne dispose plus aujourd’hui de la majeure partie des anciennes surfaces inondables utilisées pour d’autres usages. En comparant l’état de référence avec l’état actuel, on obtient une base d’évaluation pour identifier les tronçons fluviaux ou les parties du système où les mesures de renaturation doivent être intensifiées.

État de référence du Rhin

On se trouve devant un paysage fluvial dans lequel les grands tronçons restés à un état quasi naturel et d’intérêt écologique constituent les noyaux d’un réseau imbriqué. L’échange d’individus entre les différents biotopes, nécessaire pour la préservation de la diversité des espaces et l’équilibre des populations, y est possible. Le Rhin forme dans ses milieux aquatiques et terrestres, y compris le fond du lit, les rives, les surfaces inondables un habitat pour les animaux et les plantes. Les nombreuses autres surfaces d’intérêt écologique atteignent une surface minimale requise pour un bon fonctionnement écologique et sont partie intégrante du réseau de biotopes.

L’objectif de développement est le résultat d’un ajustement entre les conditions en présence et les évolutions nécessaires sous l’angle de l’écologie et prenant en compte les usages et les aspects socioculturels. En subdivisant cet objectif en objectifs opérationnels à court, moyen et long terme, on définit différents niveaux de l’objectif de développement. Celui-ci est déterminé par les modifications écologiques que la société estime acceptables et compte tenu des aspects économiques.

Le présent chapitre décrit un objectif de développement global pour le Rhin et ses zones alluviales. Il consiste en une généralisation des objectifs de développement pour les différentes unités géographiques naturelles que sont le haut Rhin, le Rhin supérieur méridional et septentrional, le Rhin moyen, le Rhin inférieur et le delta du Rhin.
Les objectifs de développement seront atteints lorsque nous nous trouverons dans la situation décrite ci-dessous pour la plaine alluviale rhénane et le lit du fleuve.

Plaine alluviale rhénane:

> les biotopes des zones naturelles et ceux des zones marquées par l'histoire humaine se complètent et constituent un réseau optimal le long de tout le fleuve. La taille des biotopes et la distance qui les sépare sont optimales pour la mise en réseau;

> la protection des zones d'intérêt écologique est garantie; outre les habitats alluviaux typiques, d'autres biotopes apparaissent à la suite de modifications anthropiques du régime des eaux (p.ex. zones particulièrement sèches) sont jugés dignes d'intérêt et sont classés dans la rubrique des zones méritant d'être protégées;

> dans les plaines alluviales inondables, les surfaces agricoles sont des prairies soumises à une exploitation extensive, respectueuse de l'environnement. Les terres de labour sont releguées dans les parties des zones alluviales très rarement inondées. Dans les régions agricoles, la richesse structurelle des zones alluviales inondables a été renforcée, p.ex. en créant et en préservant les haies, bosquets, petits cours d'eau et cuvettes humides.

> les éléments naturels typiques du paysage alluvial, comme p.ex. les forêts alluviales à bois tendres et bois durs, les forêts marécageuses, les roselières, les anciens bras et les Giessen, ont été préservés et développés en nombre et en superficie suffisants et selon une répartition optimale sur l'ensemble du cours du Rhin. Ces éléments sont soit d'origine naturelle, soit issus de mesures de renaturation ciblées. Leur gestion est respectueuse de l'environnement et n'est pas perturbée par les usages voisins;

> les éléments hydrographiques du Rhin, tels les anciens bras et les plans d'eau de gravière, sont restaurés et développés dans le respect de l'environnement naturel et sur la base de plans de développement;

> des habitats adéquats se sont développés ou ont été créés pour promouvoir les biocénoses typiques du milieu alluvial rhénan. Les espèces typiques sont présentes en populations stables;

> en tout lieu possible, les ouvrages de protection contre les inondations sont repoussés vers les terres ou sont exploités dans le respect de l'environnement. Dans l'ensemble, le pourcentage de zones alluviales inondables a sensiblement augmenté par rapport à la situation actuelle;

> l'étendue des surfaces bâties et consolidées dans les plaines alluviales inondables n'a pas augmenté par rapport à la situation actuelle; autant que possible, les constructions et les ouvrages de consolidation ont été retirés (p.ex. déplacement de fermes isolées);

> par endroit, un paysage alluvial "original" s'est développé sur de grandes surfaces. Ces surfaces sont soumises à la dynamique du fleuve et peuvent ainsi connaître de fortes modifications sous l'effet des crues intenses. Ces zones jouissent d'un statut de protection élevé.
Lit du fleuve:

- dans le Rhin et ses affluents, de nombreuses bioécosystèmes rhénans typiques se sont réimplantées. Les espèces typiques, tels le saumon et la truite de mer, sont représentées par des populations se régénérant par reproduction naturelle;

- la continuité biologique entre le cours principal du Rhin et ses affluents et ses anciens bras est garantie;

- le Rhin jusqu'à Rheinfelden reste une voie navigable. Dans la mesure du possible, la construction de chutes supplémentaires a été évitée. Les chutes existantes sont équipées de dispositifs de franchissement pour permettre le libre passage migratoire sur l'ensemble de l'hydro système fluvial qui retrouve ainsi ses fonctions d'échange biologique. Il en est de même sur les affluents;

- les tronçons libres d'eau courante ont été conservés. En de nombreux endroits, le lit du fleuve offre une diversité structurelle naturelle (p.ex. bancs, îlots, affouillements) qu'il s'agit de préserver et de promouvoir par des méthodes d'entretien adéquates. Les nombreuses structures anthropiques existantes (p.ex. les épis) contribuent à améliorer la diversité structurelle naturelle lorsqu'elles sont conçues et entretenues selon une approche écologique.

- les rives du Rhin, à l'exception des zones urbanisées et des tronçons endigués sur le Rhin supérieur, sont rétablies dans un état quasi naturel. Les rives connaissent une amélioration écologique telle que les bioécosystèmes aquatiques et amphibies peuvent s'y développer. Des groupements végétaux adaptés au site et au paysage longent le fleuve. Le lit du fleuve est bordé d'une bande riveraine suffisamment large, excepté en quelques rares endroits inadaptés. Des plans de développement ont été établis comme base de mesures adéquates.

- aux endroits où cela est possible, la morphodynamique naturelle du fleuve est à nouveau tolérée.
3. Stratégie

En comparant l'état écologique actuel dans l'espace géographique à considérer avec l'état de référence idéal, on a formulé les objectifs de développement ci-dessous et proposé des mesures en résultant. Afin de garantir durablement ces objectifs de développement et d'orienter le futur développement écologique, il est indispensable de s'assurer d'une étroite coopération nationale et transfrontière entre toutes les instances chargées d'exploiter, de protéger et de développer le Rhin et ses zones alluviales. Ce sont notamment les domaines de la protection des eaux, de la protection de la nature, de l'aménagement du territoire, de l'urbanisme, de la protection contre les inondations, de l'approvisionnement en eau, de l'agriculture, de la sylviculture, de la pêche, de l'exploitation de l'énergie, de la navigation, de l'extraction des matières premières, le secteur des loisirs et celui de l'urbanisation.

Il est recommandé

- d'élaborer pour chaque tronçon du Rhin des plans de restauration écologique et de mise en réseau. C'est sur cette base que seront élaborés par la suite les plans concrets de mise en place de biotopes. Il convient d'examiner l'intervention d'organes de coordination appropriés et/ou leur intégration dans les instances existantes.

- d'intégrer ces plans de développement dans les prescriptions de l'aménagement du territoire et d'en tenir compte dans le cadre de procédures de planification significatives pour l'environnement ou de permis de construction.

- d'intégrer dans les plans de mise en place de biotopes, qui sont à élaborer, des indications relatives aux mesures prioritaires, aux coûts et au calendrier de réalisation.

- d'associer en temps requis les groupes d'intérêt locaux et les collectivités à l'élaboration des plans de mise en place des biotopes afin de promouvoir l'acceptance nécessaire et une mise en œuvre plus rapide des mesures individuelles.

- d'envoyer des experts écologiques dans les instances décisionnelles existantes afin de sensibiliser les responsables politiques en temps requis et d'intégrer les intérêts de l'écologie.

- de formuler au cas par cas des accords avec les usagers (groupes d'usagers) concernés, afin d'avoir non seulement une certaine sécurité juridique mais aussi de garantir à moyenne et longue échéance les objectifs atteints et de permettre des processus de développement écologique efficaces à long terme.

- d'appliquer systématiquement les dispositions de protection existantes. Il existe ici un potentiel non négligeable qui permettrait de mettre en œuvre à brève échéance des objectifs de développement en vue de protéger des zones d'intérêt écologique.

- d'évaluer les possibilités de subvention (UE, États et autres) afin de mettre progressivement en œuvre les mesures proposées. Étant donné qu'il est en général nécessaire d'associer différents partenaires contractuels, la coopération interdisciplinaire devra être intensifiée.
• de permettre d’extensifier les usages agricoles afin de considérer et/ou d’établir des programmes de versements compensatoires.

• d’organiser des entretiens réguliers avec les membres des services administratifs concernés. Ces entretiens, menés séparément pour les différents tronçons du Rhin, contribueront également au niveau transfrontière à un échange continu d’avis qui aura surtout un impact positif sur la future politique d’aménagement du territoire. Il convient éventuellement d’examiner le recours à des médiateurs.

• de relier étroitement les objectifs de développement et les mesures proposés aux actuels et futurs programmes (p.ex. "Plan d’action contre les inondations visant à améliorer la prévention des crues) et de les réaliser simultanément.

• d’intensifier des travaux ciblés de relations publiques, ce qui permet de renforcer en général la prise de conscience et de sensibiliser les groupes ciblés aux intérêts de l’écologie.

Goldgrund, Rhénanie-Palatinat. Photo: GwD SOR/HR; Richter, Fribourg.
4. Examen par tronçon du Rhin

Les mesures permettant de guider la future évolution de l'écosystème résultent de la différence entre l'état actuel et les objectifs de développement. Chaque mesure doit contribuer à la mise en réseau des biotopes dans la plaine alluviale rhénane et garantir durablement l'objectif de développement. Les chapitres suivants présentent en détail l'état écologique actuel par tronçon du Rhin et les objectifs de développement.

4.1 Haut Rhin

4.1.1 Description générale de l'état écologique actuel

Entre la sortie du Lac de Constance et son entrée dans la plaine du Rhin supérieur, le haut Rhin traverse une vallée essentiellement étroite et abrupte dans laquelle les surfaces inondables, même naturelles, n'occupent qu'une surface relativement faible. Sur de grands trajets, le fleuve est directement limité par des terrasses et des coteaux.

Depuis la fin du 19ème siècle, les interventions humaines ont durablement modifié l'écosystème du haut Rhin. Les 11 barrages du haut Rhin peuvent être considérés comme les principales interventions sur l'écosystème. Les zones de retenue qui occupent environ 80% du tronçon du haut Rhin ont eu pour effet de faire disparaître la plus grande partie des structures de biotopes jadis typiques de ce tronçon fluvial. Le courant, décisif pour les habitats, a été éliminé, de même que le charriage, et le régime continu du fleuve a été interrompu. On ne trouve plus que rarement sur le haut Rhin des conditions favorables eu égard au courant et à la structure du fond du lit permettant aux espèces piscicoles rhéophiles frayant sur le gravier ainsi qu'aux espèces adaptées au courant de se reproduire. La consolidation des rives et des talus a également entraîné une perte considérable de types d'habitats jadis typiques de ce tronçon fluvial.

Il ne subsiste plus sur le haut Rhin que quatre tronçons ayant conservé leur caractère d'écoulement initial et dont la pente n'est pas exploitée à des fins hydroélectriques:

- Du lac inférieur à Gailingen/Diessenhofen
- De Flurlingen à l'aval des chutes du Rhin
- Du canal de fuite de l'usine de Rheinau jusqu'au niveau des anciens bras du Rhin à Rüdlingen à proximité de l'embouchure de la Thur
- De l'usine de Reckingen jusqu'à l'embouchure de l'Aare y compris les 'Koblenzer Laufen' (méandres de Koblenz)

Dans ces tronçons du haut Rhin qui présentent un intérêt écologique particulier et se situent aujourd'hui presque exclusivement en amont de l'embouchure de l'Aare, la diversité de la structure du cours d'eau et la diversité de la faune au fond du fleuve sont nettement plus grandes que dans les tronçons fortement aménagés dans le cours aval du haut Rhin. Les zones de retenue sont caractérisées par un nombre d'espèces et d'individus relativement faible ainsi que par le recul, voire la disparition, des biocénoses rhéophiles.

Le haut Rhin ne dispose plus aujourd'hui que de quelques restes de la plaine fluviale initiale. Les zones alluviales intactes qui, à l'état naturel, n'occupaient sur ce tronçon fluvial que des
surfaces limitées, se réduisent à de petites surfaces. Les usages très intenses sur ce tronçon entraînent un morcellement des habitats quasi naturels. Les zones protégées sont assez nombreuses, mais elles sont pour la plupart minuscules. Dans les affluents, les relations sont souvent interrompues.

4.1.2 Estimation écologique de l’état actuel

L’analyse approximative de l’état écologique général du haut Rhin donne l’image suivante: sur le tronçon du haut Rhin d’une longueur approximative de 145 km, env. 40 km sont restés à l’état quasi naturel et 34 km présentent un potentiel de restauration élevé, alors que plus de 50% sont des zones écologiques appauvries (niveau élevé de dégradation des interactions écologiques ou aménagements rigides). Les différents tronçons peuvent être subdivisés en différentes catégories:

A. Zones quasi naturelles

Les zones quasi naturelles se trouvent sur le haut Rhin dans des tronçons dont les rives abritent encore des habitats typiques du fleuve et des zones alluviales (forêts alluviales à bois tendres et à bois durs, roselières, annexes hydrauliques), des forêts continues le long du fleuve, des embouchures d’affluents non aménagées et peu d’ouvrages fixes ou dont le lit fluvial a encore un caractère d’eaux courantes. Dans ces tronçons, la diversité des espèces et la densité des peuplements au fond du fleuve sont plus importantes que dans les tronçons aménagés. Les tronçons quasi naturels sont principalement situés en amont de l’embouchure de l’Aare:

<table>
<thead>
<tr>
<th>Tronçon du Rhin</th>
<th>PK</th>
<th>Longueur km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tronçon entre Stein am Rhein et Langwiesen/Paradies</td>
<td>25 - 41,5</td>
<td>16,5</td>
</tr>
<tr>
<td>De l'usine de Rheinau à Tössriedern</td>
<td>59,5 - 73,5</td>
<td>14,0</td>
</tr>
<tr>
<td>De la station d'épuration de Wallbach à Rheinfelden (rive suisse)</td>
<td>136,5 - 147,5</td>
<td>11,0</td>
</tr>
</tbody>
</table>

C’est sur ces tronçons que se trouvent la plupart des zones protégées (zones alluviales d’intérêt national, réserves d’oiseaux aquatiques et migrateurs d’intérêt international et national, etc.) ainsi que d’autres zones reconnues dignes d’être protégées (aires de repos des espèces limicoles, périmètres de protection des eaux souterraines, frayères pour espèces piscicoles frayant sur le gravier, etc.) (cf. atlas du Rhin, pages 1, 2 et 4).

Les trois tronçons à eaux courantes libres qui ont conservé le caractère initial d’eaux courantes du haut Rhin revêtent une importance particulière, notamment pour les espèces piscicoles rhéophiles frayant sur le gravier, p.ex. le hotu, l’ombre commun et la truite. Deux de ceux parcours se situent dans des tronçons quasi naturels:

- le tronçon allant du Lac inférieur à Gaillingen/Diessenhofen (PK 25 à 34 = 9 km au total)
- le tronçon allant du canal de fuite de l’usine de Rheinau jusqu’au niveau des vieux bras du Rhin à Rüdlingen à l’embouchure de la Thur (PK 59,5 à 65,5 = 6 km au total).
La décision de 1996, qui étend la Convention de RAMSAR aux poissons, prévoit de préserver intégralement de tels tronçons.

B. Zones d'intérêt écologique présentant un potentiel de restauration élevé

D’autres surfaces limitrophes du Rhin, non bâties, les zones de retenue et les larges berges constituent d’autres zones d’intérêt écologique présentant un potentiel de restauration élevé. Elles renferment en partie des frayères d’amphibiens d’intérêt national et des zones de protection de la nature d’intérêt régional et local ainsi que des habitats reconnus dignes d’être protégés mais ne jouissant que d’un faible statut de protection. En raison de la surface qu’ils offrent, de tels tronçons se prêtent à la création de zones à vocation naturelle prioritaire ou renferment de nombreuses possibilités de renaturation et redynamisation d’habitats typiques du fleuve et des zones alluviales. En font partie les tronçons suivants:

<table>
<thead>
<tr>
<th>Tronçon du Rhin</th>
<th>PK</th>
<th>Longueur km</th>
</tr>
</thead>
<tbody>
<tr>
<td>Des chutes du Rhin à l’usine de Rheinau</td>
<td>50,2 - 59,5</td>
<td>9,3</td>
</tr>
<tr>
<td>De Tössriedern au pont de Kaiserstuhl (tronçons riverains allemands)</td>
<td>73,5 - 83</td>
<td>9,5</td>
</tr>
<tr>
<td>De Reckingen à Koblenz / embouchure de l’Aare</td>
<td>90 - 102</td>
<td>12,0</td>
</tr>
</tbody>
</table>

L’un des quatre derniers tronçons d’eaux courantes se trouve dans le tronçon allant de Reckingen à Koblenz/embouchure de l’Aare:

- **Tronçon entre l’usine de Reckingen et l’embouchure de l’Aare y compris les Koblenzer Laufen (PK 90,0 à 102,0 = 12 km au total)**

C. Zones présentant un potentiel de restauration restreint

Les zones présentant un potentiel de restauration restreint ne se prêtent pas à une restauration à grande échelle, la plus grande partie de la superficie étant occupée par des agglomérations, axes de circulation ou autres ouvrages fixes.

De telles zones accusent en général un profil fluvial trapézoïdal et sont caractérisées par un débit uniforme sur l’ensemble du fond du fleuve, ce qui entraîne une structure monotone. L’aménagement des rives est rigide, de sorte que les habitats quasi naturels limitrophes sont coupés du fleuve. Ces habitats sont coupés par des routes, des agglomérations et des surfaces agricoles à exploitation intensive, ce qui renforce le morcellement des biotopes. On ne trouve plus de véritables zones alluviales, rives et rigoles typiques de l’espace naturel que sur de petites surfaces (entre 3,5 et 5,7 ha).

Les modifications du régime hydraulique et du charriage, des relations entre le Rhin et ses zones alluviales et de la qualité des eaux ont eu un impact sensible sur la flore et la faune. Dans ces tronçons, le Rhin s’est éloigné de son état naturel. Par contre, les rives artificielles remblayées dans les zones de retenue offrent des conditions plus favorables pour le peuplement (tronçon en aval des chutes du Rhin jusqu’à l’usine de Rheinau, tronçon entre Kaiserstuhl et l’usine de Reckingen).
Sur le haut Rhin, les zones présentant un potentiel de restauration écologique restreint se trouvent principalement dans les tronçons suivants:

<table>
<thead>
<tr>
<th>Tronçon du Rhin</th>
<th>PK</th>
<th>Longueur km</th>
</tr>
</thead>
<tbody>
<tr>
<td>De Langwiesen/Paradies aux chutes du Rhin</td>
<td>41,5 - 50,2</td>
<td>8,7</td>
</tr>
<tr>
<td>De Tössrieden au pont de Kaiserstuhl (rive suisse)</td>
<td>73,5 - 83</td>
<td>9,5</td>
</tr>
<tr>
<td>Du pont de Kaiserstuhl à Reckingen</td>
<td>83 - 90</td>
<td>7,0</td>
</tr>
<tr>
<td>De Koblenz/embouchure de l’Aare à l’usine d’Albbruck/Dogern</td>
<td>102 - 113</td>
<td>11,0</td>
</tr>
<tr>
<td>De l’usine d’Albbruck/Dogern à la station d’épuration de Walbach</td>
<td>113 - 136,5</td>
<td>23,5</td>
</tr>
<tr>
<td>De Rheinfelden à Hardwald Pratteln</td>
<td>147,5 - 161,5</td>
<td>14,0</td>
</tr>
<tr>
<td>De Hardwald Pratteln à Dreiländerecke-Kleinhüningen</td>
<td>161,5 - 170</td>
<td>8,5</td>
</tr>
</tbody>
</table>

L’un des quatre derniers tronçons d’eaux courantes se trouve dans le tronçon allant de Langwiesen/Paradies aux chutes du Rhin :

- **Tronçon entre Flurlingen et l’aval des chutes du Rhin (PK 45,5 à 49 = 3,5 km au total).**

4.1.3 Objectifs de développement

□ Objectifs de protection de la nature et de redynamisation

L’objectif poursuivi sur le haut Rhin est de préserver et de restaurer le plus possible les tronçons ayant conservé un caractère d’eaux courantes et les structures dynamiques du fond, des rigoles et de rives ainsi que les habitats naturels ou quasi naturels le long des fleuves tels que forêts alluviales, eaux calmes, embouchures de ruisseaux et de s’efforcer de redonner au Rhin un état plus naturel.

Du point de vue de l’écologie alluviale et ichthyobiologique, on fixe les objectifs de développement suivants:

- veiller à préserver toutes les zones d’intérêt écologique le long du haut Rhin;
- veiller à préserver les zones précieuses existantes susceptibles de servir de base à la mise en réseau et comme noyaux d’une biodiversité élevée;
- mettre à profit le haut potentiel de restauration écologique que recèlent certaines zones appropriées;
- les grandes surfaces reliées sont plus importantes ici que de petites surfaces comparables;
- accorder une attention particulière à la protection et au développement de surfaces avec une végétation alluviale ainsi que de cours d’eau, rives et côtes quasi naturels;
- la protection et le développement des zones d’embouchure des affluents jouent également un rôle de premier plan dans l’écosystème du haut Rhin (fonction de mise en réseau, réservoir de repeuplement);
• veiller à ce que les intérêts de la protection de la nature soient pris en compte dans tous les usages à proximité des fleuves, même en dehors des zones protégées existantes;
• en général les investissements dans la protection de la nature sont plus efficaces dans les zones où la densité des surfaces précieuses est plus élevée que dans les zones présentant des déficits écologiques.

Bande alluviale continue le long du Rhin
Pour que la faune puisse migrer et se propager le long d'un fleuve, il est important qu'elle ne trouve pas d'obstacles sur son chemin. Il est également important de garantir l'accès aux refuges d'hiver. En dehors des zones forestières notamment, une bande aussi large que possible quasi naturelle ou peu exploitée le long des rives peut revêtir une grande importance. Une telle bande riveraine, zone à vocation naturelle prioritaire, tolère par ailleurs une dynamique des rives dans un certain cadre sans risque dû à des usages limicoles et améliore la protection des eaux face aux apports de polluants (il serait opportun d'atteindre une largeur minimale de 20 m).

Migration piscicole continue et frayères
Les poissons doivent pouvoir vivre, se reproduire et migrer dans le Rhin. A cet effet, il est nécessaire de préserver les tronçons à eaux courantes restants, de promouvoir la formation d'un fond graveleux et de rendre les obstacles "franchissables pour les poissons". Les experts piscicoles proposent que le saumon et le huit soient les organismes indicateurs pour le haut Rhin. La consolidation des rives, au cas où elle est absolument nécessaire, doit également être adaptée aux besoins des poissons et quasi naturelle. La dynamique fluviale doit être améliorée, là où ceci est possible, afin de réactiver le charriage et de régénérer le fond graveleux envasé.

☐ Usage durable intégré

De nombreux usages actuels doivent être considérés comme irréversibles et déterminent ainsi le potentiel de mise en réseau et de renaturation sur le haut Rhin. Détruire une usine ou déplacer une grande route en faveur de grands espaces naturels continus ne semble pas opportun. Eu égard à la fonction du Rhin comme important corridor de migration et habitat pour la faune et la flore, ces restrictions ne remettent pas en question son rôle d'artère vitale de la région. Malgré les aménagements rigides des rives et du fleuve et des usages intenses, le haut Rhin présente un potentiel élevé de renaturation et de mise en réseau. Il convient donc d'améliorer sensiblement son équilibre naturel en veillant à un usage durable et réglementé. On ne parviendra à ce résultat qu'en faisant évoluer les mentalités et au prix d'efforts matériels importants.

Promouvoir une gestion extensive des sols le long du fleuve
Il convient d'extensifier les usages le long des rives du haut Rhin afin de protéger et de préserver à long terme les habitats et espèces typiques de l'espace naturel. Dans ces zones, on devrait le cas échéant prévoir et réglementer l'entretien sélectif et alternant de la végétation sur les rives ou une gestion extensive de la bande riveraine.

Prise en compte des intérêts écologiques dans l'exploitation de l'énergie hydroélectrique
La production d'énergie hydroélectrique va continuer à jouer un rôle essentiel sur le haut Rhin. Lors de l'entretien régulier des espaces de retenue, il convient donc de s'efforcer de supprimer dans la mesure du possible les aménagements techniques des rives ou éventuellement de ne plus les remettre en état. Lors de la manœuvre des espaces de retenue, il convient de tenir plus compte des aspects écologiques.
Préserver et améliorer la qualité de l'eau
Grâce aux efforts déployés, la qualité des eaux du haut Rhin est bonne. Les analyses chimiques de l'eau montrent que les eaux du haut Rhin ne sont pas ou ne sont que très faiblement polluées. Aujourd'hui donc, la qualité de l'eau ne constitue pas de facteur limitant pour les mesures de renaturation. Il convient de ne pas seulement maintenir la qualité de l'eau à son niveau actuel, mais de continuer à réduire les apports de polluants dans l'écosystème fluvial du haut Rhin en prenant les mesures appropriées, notamment sur les affluents.

Établir un plan d'usage et de protection pour chaque tronçon
Ce plan définit d'une part les usages, d'autre part les surfaces et structures à préserver ou développer dans le cadre de la mise en réseau. La limite entre un usage durable et une contamination des ressources naturelles doit être définie comme ligne d'orientation.

☐ Protection contre les inondations et génie hydraulique

Génie hydraulique et nature
Les interventions du génie hydraulique ont fortement perturbé le Rhin en tant qu'habitat naturel. Les relations entre les terres, l'eau et le fond du fleuve ont été restreintes, voire même rendues impossibles. L'objectif poursuivi est donc de permettre autant que possible une dynamique fluviale et de ne procéder qu'aux travaux de stabilisation vraiment nécessaires (de préférence en utilisant des techniques du génie biologique). A chaque occasion qui se présente, on devrait s'efforcer d'améliorer la morphologie et dynamique fluviale et de reconquérir d'anciennes zones alluviales - là où c'est possible) aux fins de rétention naturelle des hautes eaux.

4.1.4 Principales mesures de restauration écologique
En se basant sur le schéma directeur proposé, l'état écologique actuel du haut Rhin et les objectifs de développement formulés, on peut déterminer les priorités pour la restauration écologique et la mise en réseau. Ces mesures peuvent être subdivisées en trois grands domaines, l'ordre de priorité ne devant pas toujours être strictement respecté. L'objectif est plutôt de restaurer l'écosystème du Rhin, dès que l'occasion s'en présente.

☐ Préservation intégrée des zones d'intérêt écologique (domaines)

Préservation de tous les espaces et habitats naturels et quasi naturels existants et protection systématique des espèces menacées et rares.
L'objectif est de minimiser autant que possible la part des usages éloignés de l'état naturel et de protéger en première ligne les zones alluviales, les anciens bras, les tronçons à eaux courantes et les zones d'embouchure quasi naturelles des affluents ainsi que d'autres zoobenthos précieux (p.e. les populations d'ombres communs et de castors, la végétation typique des zones alluviales et marécages plats).

Il n'existe plus aujourd'hui que quelques fragments d'habitats quasi naturels qu'il est indispensable de préserver dans leur ensemble. Cette protection devrait s'appliquer le long du haut Rhin à tous les habitats typiques du fleuve et des zones alluviales, p.e. aux forêts alluviales à bois tendres et à bois durs, aux roselières ou aux annexes hydrauliques, même minuscules. Les espèces typiques de ces habitats ne pourront survivre qu'à ces conditions. Il est important de préserver ces habitats quasi naturels, car ils sont irremplaçables. On peut et doit bien sûr créer et développer de "nouveaux" habitats, mais cela prend souvent beaucoup de temps. Il est toujours préférable de préserver que d'avoir à recréer!
Il faut également éviter de dégrader plus encore les conditions actuelles de courant et de pente. Tous les éléments naturels tels que tronçons à eaux courantes, pentes douces et abruptes ou îlots doivent être préservés, car ils sont vitaux pour de nombreux organismes. Les plus grandes populations d’ombres communs en Suisse vivent dans trois tronçons du haut Rhin qu’il est indispensable de préserver en priorité. D’autres structures quasi naturelles, comme les bosquets riverains, les lisières d’herbes hautes ou le gazon sec sur les talus de digues doivent être préservées, même s’il ne s’agit que de petites surfaces.

Les tronçons quasi naturels mentionnés au chapitre 4.1.2.A. font notamment partie de ces mesures; voir aussi l’atlas du Rhin, catégories 1 et 2.

☐ Création de zones à vocation naturelle prioritaire

L’objectif est de préserver, restaurer (p.ex. redynamiser pour améliorer la dynamique alluviale), agrandir et relier entre elles les surfaces d’intérêt écologique en mettant à disposition le plus de surfaces possibles pour rétablir un équilibre naturel fonctionnel. Les zones renfermant des surfaces de grand intérêt écologique et/ou accusant une forte densité de surfaces d’intérêt écologique sont prioritaires pour les mesures d’aménagement du territoire.

Dans les zones à vocation naturelle prioritaire, les autres usages ne jouent qu’un rôle secondaire.

L’objectif poursuivi dans de telles zones le long du Rhin est de les maintenir ou de les remettre dans un état quasi naturel. Elles doivent pouvoir être submergées et les inondations des terres limicoles doivent être tolérées. Ce n’est qu’ainsi que pourront se remettre en place les différents niveaux successifs typiques d’une zone alluviale et d’un bassin fluvial.

Les tronçons abritant des habitats typiques du fleuve, des zones forestières continues le long du fleuve et peu d’ouvrages fixes peuvent être considérés comme des zones à vocation naturelle prioritaire. Ces zones se trouvent aujourd’hui dans les tronçons du haut Rhin cités au chapitre 4.1.2 A et B.

Dans de telles zones, il est relativement facile de mettre en œuvre des projets de renaturation. L’objectif doit être de transformer le plus grand nombre possible de surfaces alluviales potentielles en habitats typiques du fleuve ou de créer de tels habitats, en redynamisant par exemple les anciens cours d’eau.

Il convient toutefois de tenir compte du fait que les mesures de renaturation peuvent également entraîner la destruction d’habitats précieux existants. Dans de tels cas, il convient de décider des priorités à fixer en fonction des biotopes.

☐ Adaptation des usages et compensation écologique dans les zones à exploitation intensive

Renaturation des zones présentant un potentiel élevé de restauration et désignation de biotopes dans le cadre de la mise en réseau des zones à grande surface

L’objectif est de redynamiser et de renaturer des surfaces qui présentent un haut potentiel et de relier ces zones nouvelles créées et les surfaces d’intérêt écologique existantes.

Par ailleurs, les zones appauvries (agriculture intensive, agglomérations, axes de circulation et autres ouvrages ou installations) doivent également faire l’objet d’une restauration écologique afin de ne plus constituer de barrière à la migration des organismes entre les zones quasi
naturelles. Il convient donc d’aménager, là où c’est possible, de larges bandes riveraines quasi naturelles. Les zones appauvries se situent en particulier dans les tronçons du haut Rhin présentant un potentiel restreint de restauration (chapitre 4.1.2 C).

On peut relier ces précieux habitats en extensifiant à grande échelle l’exploitation agricole, en créant des structures linéaires composées de bandes de bosquets, de sites alluviaux, de lisières d’herbes hautes, etc. et en créant des "passerelles biologiques", c’est-à-dire des habitats éten dus servant de passerelles pour l’échange et la propagation des populations.

La désignation (garantie légale, contrats de gestion) d’éléments de la mise en réseau pour les grandes surfaces et la renaturation des surfaces présentant un potentiel élevé de restauration sont toutes deux prioritaires. Du point de vue écologique, les mesures de renaturation sont plus importantes, mais plus difficiles à réaliser en pratique. La désignation de bandes d’intérêt écologique dans les zones appauvries est importante pour relier les grandes surfaces et peut être réalisée malgré l’usage intensif de nombreuses zones le long du Rhin.

La première étape consiste à renaturer les tronçons présentant un potentiel élevé de restauration, les surfaces non bâties limitrophes du Rhin, les zones de retenue et les berges larges, de conclure des contrats de gestion en vue d’un usage ou entretien extensif et sélectif et à créer éventuellement des habitats de substitution. Les zones présentant un potentiel élevé de restauration se trouvent dans les tronçons du Rhin cités au paragraphe 4.1.2 B.

Catalogue de mesures envisageables

Mesures prioritaires en détail
Conformément aux objectifs de développement indiqués, des mesures praticables sont proposées dans les paragraphes suivants:

Mesures ayant trait à l’aménagement du territoire
- Il est recommandé de fixer les droits de protection et d’usage dans les plans de référence des cantons (CH), les plans d’usage communaux (CH) ainsi que dans le programme-cadre sur l’espace naturel (D) et le plan régional (D).
- Elaborer un plan de développement transfrontière à orientation écologique pour l’ensemble du tronçon du haut Rhin. Ancrer ce plan dans les organes respectifs de l’aménagement du territoire et dans les plans d’orientation communaux.
- Désigner des zones menacées par les inondations et/ou des zones inondables avec des restrictions d’usage à caractère contraignant (pas de construction, pas d’exploitation ou exploitation uniquement extensif).
- Préservement toutes les surfaces non construites le long du Rhin afin de permettre les mesures de renaturation et de mise en réseau.
- Assurer et désigner une bande riveraine de protection suffisamment large le long de l’ensemble du haut Rhin non construit, là où c’est possible.
- Modifier les plans de zones (CH), dès que l’occasion s’en présente, afin de garantir une bande longeant le fleuve d’une largeur d’au moins 20 mètres, là où c’est possible.

Les mesures ayant trait à l’aménagement du territoire susmentionnées revêtent une grande importance dans la zone du haut Rhin encore caractérisée par une exploitation intensive croissante et doivent être mises en œuvre en priorité, étant donné qu’elles permettront de déterminer des objectifs de protection et de développement à caractère contraignant au niveau supérieur de planification. Elles sont la condition primordiale à la préservation et création de zones d’intérêt écologique et de leur mise en réseau. Des bases précieuses dans ce domaine seront posées dans le cadre des projets INTERREG.
Mesures ayant trait à la protection de la nature
- Mettre en œuvre le règlement sur les zones alluviales (CH) pour les zones alluviales d’intérêt national.
- Adapter les réglements relatifs aux zones protégées aux besoins actuels de la protection des habitats et des espèces, si ceci n’est pas encore suffisant (p.ex. réglementation des usages conformément aux besoins ressortant des inventaires d’espèces existants et des structures des biotopes).
- Préserver les zones d’intérêt écologique, p.ex. en en désignant de nouvelles et/ou en agrandissant les zones protégées.
- Décréter des restrictions d’exploitation, des mesures d’entretien et autres mesures de protection afin de préserver et de promouvoir la présence d’espèces menacées, p.ex. la lamproie, le martin-pêcheur, la grande libellule.
- Elaborer des plans d’entretien et de développement pour les réserves naturelles.

Mesures dans le lit du fleuve
- Interdire toute autre intervention dans les tronçons d’eaux courantes. Là où c’est possible, supprimer et/ou réduire les obstacles existants.
- Mettre la morphodynamique naturelle, là où c’est possible, en tenant compte des impacts sur le charriage, la navigation et la protection contre les inondations.
- Diversifier l’espace fluvial dans les tronçons sans morphodynamique naturelle, afin que se forment différentes conditions de courant et de profondeur des eaux.
- Procéder à des mesures de renaturation et/ou créer des zones d’eaux peu profondes et des frayères de gravier.
- Supprimer les obstacles à la migration des poissons et des autres organismes dans le Rhin, là où c’est possible.
- Interdire l’excavation de graviers ou, là où elle est indispensable aux fins de protection contre les inondations ou d’exploitation de l’énergie hydroélectrique, exploiter durablement les gravières en retirant (en partie) les quantités apportées par le charriage naturel.
- Réduire la vitesse d’écoulement en élargissant le lit du fleuve pour éviter l’érosion du fond.

Mesures aux abords des rives et dans les zones alluviales
- Stopper tout aménagement aux abords des rives et dans les zones alluviales.
- Rétablir la communication entre les annexes hydrauliques et le fleuve.
- Désensasser les anciens bras.
- Supprimer et/ou transformer les aménagements rigides des rives pour se rapprocher de l’état naturel. Là où c’est possible, désimperméabiliser les surfaces et diversifier les structures au sens de la mise en réseau de biotopes.
- Là où des aménagements longitudinaux rigides sont requis, ne pas dépasser le niveau moyen des eaux; procéder au-dessus de ce niveau à des aménagements écologiques.
- Aplanir les berges.
- Établir des zones de contact entre le Rhin et les terres (lisière et bosquets riverains).
- Lorsque des barrages existent, placer au moins sur certains tronçons des barrages-déversons et des tuyaux à syphons, afin que les sites et les lits fluviaux comprimés puissent être régénérés grâce à des submersions régulières à grande échelle.
- Mettre en place des cuvettes susceptibles d’être inondées et/ou élargir le lit du fleuve afin de permettre la formation d’une zone alluviale.
- Renaturer les alentours: extensifier les usages et désigner des surfaces de succession afin de développer des habitats diversifiés, à structure riche, abritant de nombreuses espèces.
- Minimiser l’effet de barrière dû aux zones de lotissements, axes de circulation, cultures agricoles et sylvicoles intensives en prenant des mesures de mise en réseau de biotopes.
- Réduire et/ou adapter la mise en valeur de zones d’intérêt écologique (p.ex. déplacer les chemins qui coupent d’anciens bras ou d’autres biotopes dignes d’être protégés).
- Lorsque des surfaces doivent être mises en valeur, le faire si possible ponctuellement et non le long des cours d’eau.
- Éviter l’aménagement du fond du fleuve: remplacer les aménagements existants par des matériaux non consolides (échange entre les eaux souterraines et les eaux de surface, frayères piscicoles).
- Adapter les mesures de protection et les éventuels dispositifs sur les berges aux objets à protéger.

Mesures sur les affluents
- Élaborer des schémas et plans de développement des cours d’eau.
- Remettre les affluents en communication avec le Rhin (embouchures quasi naturelles, suppression d’obstacles à la migration, rétablissement du libre passage même dans les zones d’agglomération, etc.).
- Supprimer les aménagements techniques rigides (sur les rives).
- Permettre au fleuve, là où c’est possible, de reprendre un cours naturel.
- Tenir compte des intérêts écologiques lors de l’entretien des cours d’eau. Procéder à des mesures de renaturation et développer à long terme des zones riveraines à structure riche en vue de la mise en réseau avec l’arrière-pays.
- Retirer les collecteurs de charriage existants ou permettre le transport régulier des matériaux vers l’aval.
- Réaliser un profil transversal le plus large possible; interdire tout usage sur une bande de 5 m ou mieux encore de 10 à 15 m de large à partir du bord supérieur de la berge.
- Appliquer les prescriptions de la loi sur le développement de lisières riveraines (D).
- Aménager les ouvrages transversaux en se conformant aux prescriptions du génie hydraulique écologique (rampes de franchissement, rampes rugueuses, etc.).
- Réguler la croissance des herbes dans le cours d’eau en végétalisan naturellement les rives (ombragement).

Mesures ayant trait à l’exploitation de l’énergie hydroélectrique
- Moderniser les aspects techniques des turbines avant de penser à augmenter artificiellement la hauteur des chutes.
- Améliorer la structure morphologique du lit, des rivières artificielles et de rives dans les zones de retenue y compris celle des embouchures d’affluents.
- Aplanir les rives abruptes dans les zones de retenue, là où ceci présente un avantage écologique et où les conditions le permettent.
- S’efforcer de gérer l’espace de retenue de sorte que les régulations soient compatibles avec les besoins de la protection de la nature. Les niveaux d’eaux variables sont plus précieux pour la protection de la nature que les niveaux constants, à condition que le niveau soit constant au début de l’été et soit abaissé à partir du plein été. Des zones inondables spécifiques peuvent ainsi se former.
- Garantir le libre passage des poissons à la montaison et à la dévalaison et réduire les pertes dues aux turbines. En toute occasion possible, construire des rivières artificielles afin que les espèces macrozoobenthiques puissent également franchir les obstacles.

Mesures ayant trait à l’agriculture
- Extensifier l’exploitation agricole à proximité du fleuve.
- Préservant les structures quasi naturelles existant dans ces zones et les compléter éventuellement en créant des haies, des groupes de bosquets, de petits cours d’eaux, des dépressions humides.
- Dans les zones à vocation naturelle prioritaire en Suisse, l'exploitation agricole doit se réduire à l'exploitation de prairies permanentes sans utiliser d'engrais ni de pesticides. Cet usage permet d'éviter l'érosion des sols en cas d'inondation et l'apport de nutriments dans les eaux souterraines et les eaux de surface.
- Les zones agricoles à exploitation extensive doivent être considérées comme une compensation écologique et font l'objet en Suisse d'une indemnisation en vertu de l'article 31 b de la Loi sur l'agriculture.
- Clôturer les abords de rives en cas de pâturage limitrophe.
- Respecter l'ordonnance sur les substances dans tous les cours d'eau. (CH)
- Conseils de fertilisation sur les surfaces agricoles aux abords des rives. (CH)

Mesures ayant trait à la sylviculture
- Tenir compte en priorité des aspects écologiques lors de l'exploitation et de la planification sylvicole dans les forêts alluviales (potentielles) et autres forêts riveraines quasi naturelles. Désigner éventuellement d'autres biotopes forestiers et types de forêts protégées (D).
- En Suisse, désigner (sous forme de réserves totales, lorsque c'est judicieux) et indemniser les réserves forestières, là où c'est nécessaire.
- Transformer progressivement les plantations existantes et étrangères au milieu alluvial et aux abords des rives en une végétation typique de ces milieux.
- Interdire toute nouvelle route pour la mise en valeur d'une zone.
- Réduire la densité actuelle de zones mises en valeur au strict nécessaire.

Mesures dans le secteur des loisirs
- Adapter le trafic des bateaux à moteur sur le Rhin aux nécessités écologiques.
- Mettre en place un "tourisme adapté aux besoins de l'écologie" sur le haut Rhin (guidage et information des visiteurs, équipements destinés aux visiteurs respectueux de la nature et de l'environnement, etc.).
- Revaloriser du point de vue écologique les installations de loisirs existantes.
- Informer les populations pour les sensibiliser aux questions de protection de la nature (tableaux, "sentiers éducatifs").

Tronçon au débit réservé sur le haut Rhin en aval de l'usine d'Albbruck-Dögern; des plans d'eaux calmes entraînent un envasement du lit du fleuve. Photo: Gerster, Constance.
4.2 Rhin supérieur

Dans la plaine alluviale du Rhin supérieur, avant l'époque fortement marquée par l'action anthropique, les zones alluviales étaient beaucoup plus influencées par le Rhin. Ce sont surtout les inondations de grande ampleur, avec leurs effets morphogènes, qui déterminaient les modifications durables du paysage et une diversité remarquable en biotopes et communautés de vie.

Si l'on considère le Rhin supérieur, dans son état naturel, on peut distinguer approximativement trois secteurs morphologiques se succédant d'amont en aval:

- la zone des ramifications entre Bâle/Huningue et Lauterbourg/Au am Rhein, avec un lit divisé en nombreux bras.

- la zone des méandres vers le nord, où le lit uniforme divagait dans une large plaine alluviale jusqu'à Mayence/Wiesbaden.

- l'étroite vallée du Rheingau entre Mayence/Wiesbaden et Bingen avec sa zone à grandes files longitudinales.

Les interventions techniques majeures, depuis le début du XIXème siècle, ainsi que le régime hydrologique ont déterminé l'usage intensif actuel de la plaine alluviale. Ainsi, les aménagements hydrauliques et l'intensification des usages, qui en résultait, ont modifié durablement l'écologie des zones alluviales du Rhin supérieur.

La correction du Rhin supérieur depuis Bâle jusqu'à l'aval de Mannheim (1817 à 1880), d'après les plans de Johann Gottfried Tulla a réuni les eaux du secteur anastomosé dans un lit principal, et les grandes boucles du secteur des méandres ont été court-circuitées pour former un lit rectifié. En même temps, des renforcement des berges, des endiguements continues, des mesures d'assèchement et de gains de terre, ont également été mis en œuvre à l'aval du secteur de la correction de Tulla. Dans le prolongement de ces travaux hydrauliques, des tronçons de digue ont été déplacés vers le fleuve.

La canalisation du Rhin supérieur a ensuite commencé à Kembs en 1932, ce qui a permis de stopper l'érosion du fond du lit consécutive à la correction de Tulla. Elle s'est poursuivie, sur 165 km, jusqu'à Iffezheim (10ème chute, 1977). A l'aval commence le secteur à courant libre. Au fil des aménagements successifs, le problème de l'érosion, avec abaissement corrélatif de la nappe phréatique, a été reporté à l'aval de chaque chute. Il existe maintenant à l'aval d'Iffezheim.

Au fil des aménagements successifs, les surfaces inondables par le fleuve ont fortement régressé. Ainsi, sur le tronçon entre Kembs/Märkt et Karlsruhe, près de 660 km² ont été perdus du fait des endiguements, et 80 km² par l'érosion du fond du lit (cf. figure 4.2), ce qui représente une perte totale d'environ 78 % de la surface du champ d'inondation naturel. Enfin, une autre surface inondable d'environ 130 km² a disparu suite à l'aménagement moderne du Rhin supérieur (cf. figure 4.2).
Fig. 4.2: perte des surfaces inondables depuis 1800

Boucle sur Rhin supérieur. Photo: GwD SOR/HR; Richter, Fribourg.
4.2.1 Le Rhin supérieur méridional entre Bâle/Huningue et Beinheim/Ifezheim

4.2.1.1. Description générale de l’état écologique actuel

Le Rhin supérieur méridional étant aménagé différemment en fonction des tronçons, il est nécessaire de présenter et d’évaluer séparément l’état écologique de ces trois tronçons:

- Grand Canal d’Alsace et lit originel de la correction de Tulla ("Vieux Rhin") entre Bâle/Huningue et Vieux-Brisach/Vogelgrün
- Secteur des aménagements en festons entre Vieux-Brisach/Vogelgrün et Kehl/Strasbourg
- Secteur à lit entièrement canalisé entre Kehl/Strasbourg et Ifezheim/Beinheim.

On peut dire en général pour l’ensemble du Rhin que la morphodynamique naturelle a été presque complètement interrompue, l’apport de charriage en provenance du bassin alpin n’étant plus possible aujourd’hui.

☐ Grand Canal d’Alsace et lit originel de la correction de Tulla ("Vieux Rhin"), entre Bâle/Huningue et Vogelgrün/Vieux-Brisach (atlas du Rhin, pages 5 et 6)

Sur la rive gauche, le Grand Canal d’Alsace, avec son fond étanche et ses berges bétonnées, s’érige en barrière hydrologique et biologique. L’"île de Kembs/Vieux-Brisach", comprise entre le Canal et le Vieux Rhin, se trouve ainsi isolée par rapport à l’arrière-pays français.

L’ancienne plaine alluviale de la rive droite forme une bande entre 200 m et plus de 2 km de large. Seul le prolongement du massif d’Istein, dans le secteur de la barre d’Istein (PK 178 à 183), arrive à environ 100 m du lit du Rhin.

Suite à la puissante érosion du fond du lit, qui a progressé vers l’aval de Vieux-Brisach comme conséquence de la correction de Tulla, le Vieux-Rhin n’arrive plus à submerger ses bords, sauf dans la partie nord de l’île, où les très fortes crues peuvent encore inonder quelques dépressions entre le Grand Canal d’Alsace et le Vieux-Rhin ainsi que sur la rive droite du Rhin PK 217 (au nord de Karpenhodschütz). Du fait de l’approfondissement du lit du Vieux Rhin et des débits dérivés (jusqu’à 1 400 m³/s) vers le Grand Canal d’Alsace, le niveau de la nappe phréatique ainsi que le niveau moyen du vieux Rhin ont été fortement abaissés. Les nombreux bras de l’ancienne zone des tresses et anastomoses se sont presque complètement asséchés.

Les débits réservés fixés contractuellement pour le Vieux-Rhin sont de 30 m³/s pendant les mois d’été et de seulement 20 m³/s pendant les mois d’hiver.

Sur l’île de Kembs/Brisach et dans l’ancienne plaine alluviale de la rive droite du Rhin, entre les PK 174 et 217 (au sud du Karpfenhod), les modifications d’habitat, ainsi décrites, ont conduit au développement de groupements végétaux thermophiles. Ainsi, sur la rive droite, les réserves naturelles "Kappellengrien" et "Rheinwald-Neuenburg" occupent un rang de valeur écologique exceptionnelle.

Un cordon de végétation alluviale pionnière (aulne buissonnant, fourrés d’aulnes blancs, forêts initiales de saules et de peupliers) s’est développé sur les bords du lit encaissé, notamment entre les épis transversaux, en partie grandes zones d’atterrissages.
□ Secteur des aménagements en festons, entre Vogelgrün/Vieux-Brisach et Strasbourg/Kehl (atlas du Rhin, pages 6 à 9)

A partir de 1957, la canalisation du Rhin supérieur s'est poursuivie entre Vieux-Brisach/Vogelgrün et Kehl/Strasbourg par la construction d'usines et d'écluses dans les dériva-
tions du fleuve pouvant transiter jusqu'à 1550 m³/s (aménagement en festons). Le débit réservé de 15 m³/s, attribué au Rhin délaissé (Rhin de Tulla) passe tout d'abord dans les turbines installées sur les barrages de dérivation. En construisant des seuils fixes avec des passes à poissons, on a interrompu le libre passage des poissons et autres espèces. Le continuum du régime d'écoulement est interrompu. Du fait de la dérivation, la dynamique des eaux souterraines a été fortement atténuée.

Les îles du Rhin (Marckolsheim, Rhinau, Gerstheim et Rohrschollen), avec leurs forêts allu-
viales et leurs cours d'eau résiduels, sont inondables en quasi-totalité jusqu'à la digue de canalisation en bordure est du canal de dérivation. Sur la rive allemande, en face des îles, les inondations peuvent s'étendre jusqu'aux digues des hautes eaux (par endroits jusqu'à 1,5 km dans l'arrière-pays). Ces secteurs, îles du Rhin côté français et surfaces de manœuvre côté allemand, ne sont submergés qu'en période de forte crue et forment les seules zones inonda-
bles restantes sur le cours méridional du Rhin supérieur (zones alluviales dites "batardes" en vocabulaire allemand).

En bordure des tronçons canalisés, l'ancien lit majeur n'est plus submergé. Ces zones alluvia-
les mises à l'écart du fleuve depuis 30 à 40 ans ont conservé des biotopes encore marqués par l'héritage écologique des inondations. Sans inondation, les grandes forêts riveraines restantes se transforment - à long terme - en forêts non alluviales. C'est notamment le cas des grands massifs forestiers de Marckolsheim-Schoenau, de Rhinau-Daubensand et d'Erstein-Plößheim. En conséquence, l'aménagement en festons a réduit les variations du niveau des eaux superficielles et a entraîné la perte presque complète de la dynamique des eaux souterraines, typique du milieu alluvial. En général, à l'amont des barrages, le niveau moyen des eaux souterraines a été relevé; à l'aval, le niveau des eaux souterraines est soutenu par des seuils fixes.

La pente du fleuve, encore relativement forte au nord de Vieux-Brisach (tombant de 1‰ à 0,5 ‰ vers le nord) et son débit important (plus de 5.700 m³/s en cas d'inondations extrêmes) ont entraîné la formation de bras latéraux, servant de rigoles d'écoulement en période de crue: "les Giessen (affluents en partie phrétiques)". En période d'étage, ces Giessen étaient exclusivement alimentés par de l'eau souterraine, se transformant en "Brunnenwasser" (eaux de fontaine), une eau très claire et pure. Ces Giessen, qui se trouvent le plus souvent dans les zones forestières, remplissent une fonction importante dans la diversification du paysage et l'échange avec les eaux souterraines; ils servent d'habitats à des biocénoses particulières et très rares. Par contre, les anciens bras du Rhin, de type "Altwasser" se ferment de plus en plus par atterrissement.

Sur la rive droite du Rhin, à l'arrière des "digues de Tulla" (anciennes digues de hautes eaux), l'activité dominante est l'agriculture. Cependant, à long terme, des prairies naturelles exploi-
tées, plus ou moins nombreuses et différenciées, pourront être rattachées au réseau de biotopes. Des roselières d'intérêt écologique sont encore représentées, à l'état fragmentaire le long des cours d'eau externes au compartiment endigué.
□ Sector à lit entièrement canalisé, entre Strasbourg/Kehl et Beinheim/Iffezheim
(atlas du Rhin, pages 9 à 11)

L'érosion se poursuivait en aval du barrage de Strasbourg aurait eu un impact négatif sur l'environnement du Rhin. La canalisation a donc été poursuivie à l'aval de Strasbourg en application de la convention franco-allemande du 4 juillet 1969. Pour chacune des deux chutes aménagées dans ce secteur (Gamsheim 1974, Iffezheim 1977), le barrage, l'usine et les écluses se trouvent sur un même axe, transversalement au fleuve. Aussi les grandes îles inondables, qui caractérisent le corridor fluvial sur le secteur aménagé en festons, ne sont elles plus représentées ici. Seuls les élargissements d’emprise au niveau de chaque chute apportent quelques éléments de diversification du lit, par la présence de digues et d’îlots séparatifs faisant partie des installations de la chute. Les lignes d’eau s’établissent en marches d’escalier (lignes de remous) dans un lit entièrement canalisé, avec des niveaux plus ou moins perchés de 10 m au plus par rapport au terrain naturel, les infiltrations en provenance du Rhin canalisé étant drainées par un contre-canal sur les deux côtes du fleuve.

On constate également dans ce secteur une réduction sensible des battements de nappe. La forte dynamique, typique du milieu alluvial, a presque complètement disparu à la suite de la construction des barrages. Les battements vers le bas en particulier ne sont plus possibles aujourd’hui.

Ici, le système hydrographique se compose de quelques grands affluents provenant des Vosges et de la forêt Noire (Ill, Moder, Kinzig, Rench, Acher), dont les débouchés respectifs, après réunion avec le contre-canal, ont été déplacés vers l’aval du barrage suivant. Les zones inondables, parfois inondables, sont à présent coupées du fleuve par des digues. Pour les affluents et leurs systèmes de confluence, le déplacement des embouchures vers l’aval implique une réduction de l’étendue des inondations. Autrefois, ces zones étaient caractérisées par des crues de remous.

Sur la rive gauche du Rhin, ces effets s’appliquent sur un paysage alluvial caractérisé par la présence de grands massifs forestiers : forêt de la Wantzenau dans le secteur de l’ancien débouché de l’Ill, forêt d’Offendorf dont une grande partie est issue de la correction de Tulla. Du fait de la suppression des inondations régulières et de l’atténuation de la dynamique des eaux souterraines, ces forêts perdent progressivement leur caractère alluvial originel.

Sur la rive droite, la largeur de la plaine alluviale est comprise entre 200 m et plus de 4 km. Quelques zones forestières, en partie interrompues par des plans d’eau de gravières, s’étalent le long du Rhin. Dans le compartiment externe aux digues de Tulla, c’est encore l’agriculture qui domine. Quelques roselières et prairies à Molinie, ainsi que des prairies naturelles exploitées, surtout situées au nord du débouché de la Rench, augmentent la valeur écologique des biotopes. Sur la totalité du tronçon entre Vieux-Brisach et Iffezheim, des pelouses moyennement sèches et de grande étendue se sont développées, en grande surface, sur les digues de hautes eaux.

4.2.1.2 Estimation écologique de l’état actuel

Le paysage actuel du secteur canalisé garde des attraits considérables et continue d’héberger des biotopes de valeur scientifique, esthétique et culturelle exceptionnelle, ceci malgré l’état très aménagé du fleuve.
Les premières mesures de protection remontent à 1939 (réserve naturelle Rottlichwald près de Durmersheim). Ensuite, ces mesures se sont diversifiées et généralisées et aujourd'hui un complexe de zones, diversément étendues et protégées, accompagne le cours du fleuve jusqu'au-delà du secteur canalisé.

Suite au sommet franco-allemand de l'environnement, qui s'est tenu le 31 août 1992 à Strasbourg, le corridor fluvial entre Bâle et Karlsruhe (190 km), fait l'objet d'une proposition de désignation transfrontalière comme zone humide d'importance internationale au titre de la Convention de Ramsar. La plus grande partie de la zone proposée s'étend sur une longueur de 165 km des deux côtés du Rhin canalisé; d'autres zones se situent sur 25 km, de part et d'autre du Rhin à écoulement libre et à aménagement rigide des berges.

☐ Biotopes caractéristiques et régimes de protection en rive française

Par rapport à la surface de chaque partie de la bande rhénane en rive française ("champ d'inondation naturel du Rhin"), les zones protégées ou en cours de procédure de protection (catégorie I) couvrent:

30 % sur le secteur du Grand Canal d'Alsace
45 % sur le secteur aménagé en festons,
54 % sur le secteur à lit entièrement canalisé.

Pour les zones d'intérêt écologique sans statut de protection (catégorie II), les pourcentages respectifs sont:

4 % sur le secteur du Grand Canal d'Alsace
6 % sur le secteur aménagé en festons,
2 % sur le secteur à lit entièrement canalisé.

Dans la catégorie des zones protégées ou en cours de procédure administrative de protection, on distingue plusieurs types d'habitats et de statuts de protection:

Les forêts alluviales, malgré un recul très important occupent encore une place significative dans les paysages riverains. Pratiquement toutes les forêts rhénanes subsistantes sont sous statut de protection ou en procédure de protection: réserves naturelles de l'Ile de Rhin au, de la forêt d'Erstein, de l'Ile du Rohrschollen, des forêts de Strasbourg (en instruction), de la forêt d'Offendorf; réserves biologiques domaniales de l'Ile de Marckolsheim (en instruction), de la forêt de Daubensand (en instruction), de la forêt d'Illkirch-Graffenstaden (en instruction), de la forêt d'Offendorf; forêts de protection de Baltzenheim, Marckolsheim, Mackenheim, Schoenau, Artolsheim, Bootzheim, Erstein, Sundhouse, Nordhouse, Offendorf, Dalhunden, Fort-Louis, Beinheim; sites inscrits des îles de Kembs-Brisach, Marckolsheim, Rhinau.

En pourcentage estimé par rapport à la surface totale des forêts rhénanes actuelles (environ 70 km²), on distingue entre Bâle et Beinheim:

- les forêts mises hors inondation et hors nappe phréatique par l'érrosion historique consécutive à la correction de Tulla: 25 %
- les forêts mises hors inondation à l'aval de Vieux-Brisach, mais restant plus ou moins influencées par la nappe phréatique: 60 %
- les forêts inondables qui subsistent sur les îles du Rhin et dans les zones de remous au débouché des affluents: 15 %.
Les cours d’eau et anciens bras de type Giessen et Altwasser sont englobés en grande partie dans les forêts bénéficiant d’un statut de protection.

Comme site représentatif des bas-marais rhénans on peut mentionner la réserve naturelle de la "Petite Camargue alsacienne" avec ses anciens bras, roselières, prairies humides, landes à orchidées.

Comme système de confluence, le cours inférieur de la Moder, avec son ancien débouché dans le Rhin, est protégé par arrêté préfectoral. Système de confluence récemment modifié par la canalisation, l’ensemble se signale par la variété de ses paysages et leur remarquable harmonie: forêts alluviales, roselières, prairies humides, landes à orchidées.

La réserve rhénane de chasse et de faune sauvage, entre Bâle et Lauterbourg, forme un ensemble continu de milieux divers englobant le Rhin de la rive gauche, les canaux de dérivation, l’ile de Kembs-Brisach (également site inscrit), une grande partie des îles du secteur des festons (par ailleurs, forêts de protection, sites inscrits et zone de réserve naturelle sur l’Ile de Rhinoau), en partie aussi les terrains longeant la digue de canalisation jusqu’à la route de service.

Le plan d’eau de Plobsheim (bassin de compensation) protégé par arrêté préfectoral de conservation de biotope, est associé à la réserve de chasse et de faune sauvage pour accueillir les oiseaux hivernants et migrateurs (plus de 10 % de l’ensemble des effectifs du secteur de Bâle à Lauterbourg).

Les zones d’intérêt écologique, sans statut de protection, comportent notamment la forêt de Heiteren, l’agrandissement de la réserve naturelle de la Petite Camargue Alsacienne, des tronçons de cours d’eau externes aux compartiments endigués (système de l’Ischert entre Markolsheim et Rhinoau, système du Brunwasser et de Muhlbach entre Rhinoau et Gersheim), des surfaces contiguës aux forêts de Kunheim, d’Artolsheim, de Schoenau, de la Wantzenau, de Beinheim et un ancien bras entre le polder de la Moder et la chute d’Iffezheim.

Les superficies des zones protégées sont très variables d’un site à l’autre:

- Réserve naturelle de la Rohrschollen de 310 ha (Ile du Rohrschollen) et 60 ha (forêt d’Offendorf)
- Sites inscrits de 1 462 ha (Ile de Kembs-Neuf-Brisach) et 347 ha (Ile de Markolsheim)
- Biotopes protégés par arrêté préfectoral de 2 500 ha (cours inférieur de la Moder) et 6 ha (Héronnière de Beinheim).

Chaque zone protégée dispose de moyens de gestion: comité consultatif, gestionnaire, moyens financiers.

□ Types de biotopes et régimes de protection en rive allemande

La plaine alluviale de la partie méridionale du Rhin supérieur est surtout marquée par la prédominance de petites surfaces protégées, de forme ponctuelle ou linéaire. Près de 60 % de l’ensemble des zones d’intérêt écologique ne dépassent pas 1 ha. Ces types de biotopes comportent notamment des cours d’eau oligotrophes et mésotrophes, des prairies à molinie, des bas-marais calciques et des pelouses sèches. Les menaces pour ces biotopes sont d’une part les modifications consécutives à l’aménagement du Rhin supérieur, d’autre part l’abandon de pratiques culturales historiques (voir figure 4.2.1).
Des types de biotopes, d'intérêt écologique, reliés les uns aux autres, de grande étendue dépassant 20 ha ne se rencontrent qu'à l'état fragmentaire: forêts thermophiles à chênes pubescents dans le Sud, entre Vieux-Brisach et Iffezheim, chênes-charmaies, forêts à bois durs analogues aux forêts alluviales, biotopes des vergers traditionnels à hautes tiges et prairies naturelles exploitées.

Les plus grandes zones protégées dans le secteur méridional du Rhin supérieur sont la réserve naturelle du Taubergiessen (1.682 ha), ainsi que les Landschaftsschutzgebiete (équivalents de nos sites inscrits), des forêts alluviales rhénanes (572 ha) et du lit majeur du Rhin (231 ha).

4.2.1.3 Objectifs de développement

Sur le cours méridional du Rhin supérieur la formulation d'objectifs de développement doit tenir compte des limites de faisabilité suivantes:

- modification du régime d'écoulement des eaux du Rhin due à l'aménagement du Rhin supérieur et, en conséquence, modifications des sites.

- mise en œuvre des mesures de rétention des crues du Rhin, dans le cadre de la convention franco-allemande du 6 décembre 1982 qui en partie ouvrira des opportunités pour une restauration écologique;

- existence de droits d'eau, sur le fleuve et sur ses annexes (canaux, bras latéraux, affluents). Les débits disponibles pour la restauration écologique sont généralement fortement limités devant les besoins d'eau pour la production d'énergie hydroélectrique.

- existence de droits du sol. Les besoins pour la protection de la nature et pour la restauration écologique interfèrent notamment avec ceux de l'extension ou de la mise en place de surfaces agricoles, de zones industrielles et de l'extraction de granulats.

□ Objectifs de développement en rive française

Plusieurs documents de planification concernent l'écosystème rhénan et s'inscrivent dans une démarche de développement durable et intégré.

Le volet protection et restauration des hydrosystèmes peut se décliner ainsi pour le Rhin et son réseau annexe:

* Lit mineur et moyen du Vieux-Rhin:
 valoriser les épis en tant qu'éléments de diversification du lit, de maintien de la biodiversité, de retour de biocénoses typiquement alluviales.

* Lit majeur mis à l'écart du fleuve par la canalisation, c'est-à-dire zones alluviales "anciennes" depuis les travaux de canalisation:
 promouvoir des opérations pour réactiver certaines zones d'expansion des crues dans l'objectif de réduire la puissance des crues à l'aval et de restaurer l'écosystème du lit majeur.

32
Fig. 4.2.1: présentation schématique de l'évolution historique et "stationnelle" (conditions mésologiques) de la forêt alluviale à bois durs entre Vieux-Brisach et Ifsheim
* Compartiments externes aux digues de hautes eaux:
 - favoriser le maintien d'une bande non cultivée le long des cours d'eau;
 - inciter à des pratiques agricoles permettant le maintien de certaines espèces animales et végétales;
 - inciter à la mise en place de mesures agri-environnementales sur les secteurs intéressants et cohérents du point de vue du patrimoine naturel.

* Cours d'eau de type Giessen et Mühlbach:
 - restaurer la diversité structurelle des lits: variabilité des types d'écoulement et diversification des berges;

* Nappe phréatique rhénane:
 - gérer les niveaux des nappes, les prélèvements et les caractéristiques physico-chimiques des eaux souterraines pour maintenir la biodiversité des écosystèmes aquatiques, notamment des rivières phréatiques, et des zones alluviales riveraines.

Le Schéma d'aménagement et de gestion des eaux, SAGE "Ill - Nappe - Rhin", est un document de planification en référence aux orientations du SDAGE. Actuellement en phase de travaux préalables à son élaboration, il couvrira l'aire d'extension de la nappe phréatique rhénane et offrira un cadre de concertation régional pour la protection et la gestion des écosystèmes de la bande rhénane.

Les Orientations et Directives Locales d'Aménagement forestier, ORLAM - DILAM pour la région forestière de la vallée du Rhin, septembre 1994, sont des guides de gestion qui visent à adapter le plus finement possible la sylviculture aux conditions écologiques particulières de la bande rhénane.

Les Schémas des carrières des départements du Haut-Rhin et du Bas-Rhin, en phase de validation, visent à orienter l'extraction des granulats vers les sites où l'impact sur l'écosystème est le moindre; le principe général étant d'interdire toute exploitation dans les zones sensibles du point de vue biologique.

☐ Objectifs de développement en rive allemande

Empêcher toute nouvelle mesure d'urbanisation sur les surfaces inondables ou sur les surfaces de manœuvre

Les surfaces inondables et les surfaces de manœuvre doivent absolument être préservées de toute nouvelle mesure d'urbanisation pour assurer la future protection contre les inondations. La sylviculture et l'agriculture ainsi que les autres usages dans ces zones devraient tenir compte des conditions similaires à celles du milieu alluvial.

Prendre en considération les mesures du Programme Intégré Rhin en matière d'aménagement du territoire

Dans le cadre du Programme Intégré Rhin, sont prévus 13 sites de retention des crues ainsi que de nombreuses autres mesures visant à renaturer les zones alluviales sur l'ensemble de la bande rhénane. Pour s'assurer que ces mesures seront réalisées sur ces sites, on doit s'efforcer de doter les zones concernées d'un statut juridique contraignant (en les inscrivant par exemple dans les plans régionaux).
Laisser si possible agir les processus morphodynamiques naturels
Là où les intérêts de la protection contre les inondations et de la navigation le permettent, on devrait renoncer à toutes mesures d’entretien et de consolidation des rives susceptibles d’entraver la morphodynamique naturelle. Des îlots de gravier au sol brut peuvent ainsi se former ponctuellement et servir de frayères aux poissons qui faisaient sur fond de gravier.

Dynamiser les niveaux d’eau souterraines
Après la construction des chutes, le colmatage croissant du lit du Rhin a entraîné un amortissement sensible des battements de nappe, provoquant tout d’abord un engorgement des sites à proximité du Rhin, puis aujourd’hui, du moins en partie, un abaissement des niveaux moyens de la nappe. Il est prouvé que les inondations écologiques systématiques dans les futures zones de rétention du Rhin supérieur ainsi que le passage continu de l'eau dans les systèmes hydrographiques existants permettent de redynamiser les eaux souterraines et de rétablir des battements de nappe analogues à ceux du milieu alluvial.

Améliorer le régime d’écoulement
Au fil des activités humaines, des obstacles se sont formés en de nombreux endroits de la bande rhénane, transversalement au sens d’écoulement du Rhin, empêchant la libre submersion des zones alluviales. Réchauffement et consommation d’oxygène en sont les conséquences. En prenant les mesures adéquates, on peut éviter ici les phénomènes de remous, c’est-à-dire l’accumulation de l’eau à l’amont d’obstacles à l’écoulement.

Renaturer les affluents
La renaturation des affluents permet non seulement aux biotopes fluviaux typiques de se développer et de se diversifier, mais contribue également à améliorer la protection contre les inondations et la qualité des eaux.

Conservier l’état quantitatif et qualitatif des biotopes
La forte pression exercée par les usages les plus divers sur les surfaces de la bande rhénane impose de préserver les biotopes subsistants. Les biotopes du paysage naturel et ceux des zones marquées par l’histoire humaine doivent se compléter et constituer un réseau optimal.

Renaturer les surfaces agricoles
C’est notamment dans les zones de la bande rhénane qui pourront à l’avenir être rattachées au système des submersions du Rhin (espaces de rétention) qu’il convient d’extensifier successivement l’agriculture intensive.

Diversifier le paysage en ajoutant des éléments ponctuels et linéaires
Eu égard à la future mise en réseau des biotopes dans la bande rhénane, il est particulièrement important de développer les éléments de biotopes existants et/ou d’en créer de nouveaux. Il convient notamment d’augmenter les surfaces de vergers traditionnels à haute tige ainsi que les surfaces de prairies et de pâturages.

Restaurer le régime hydrique de zones anciennement humides ou de zones d’anmoor
Il convient de procéder à la restauration ciblée du régime hydrique dans les sites reliques de l’ancienne dépression marginale afin de protéger et de préserver la végétation et la faune typiques de ce milieu.

Laisser se développer un reboisement naturel ou un boisement en conditions proches de la nature
Là où des surfaces adéquates sont disponibles, il convient de permettre le reboisement naturel pour développer des biotopes dans des conditions proches du milieu alluvial. Dans le cadre d’une sylviculture durable dans la bande rhénane, il convient de tendre, autant que possible, vers des conditions de reboisement proches de la nature.
Promouvoir l'évolution naturelle de certaines surfaces dans les gravières
Les zones d'intérêt écologique situées dans les gravières doivent être développées dans le respect de conditions quasi naturelles. Il faut éviter d'étendre tout usage intensif aux fins de loisirs.

4.2.1.4 Principales mesures de restauration écologique

☐ Catalogue de mesures envisageables pour le secteur canalisé du Rhin Supérieur

Les mesures hydrauliques se définissent ainsi:

Retour à l'înondation de certaines parties de l'ancien lit majeur du Rhin: dans le cadre des projets de protection contre les crues, il convient d'étudier la réactivation des zones alluviales mises à l'écart du fleuve par la canalisation. Ces zones sont généralement délimitées par les réseaux des anciennes digues et localement, par le rebord de la terrasse à berge haute. Sur le Rhin supérieur aménagé, il n'est pas possible, pour des raisons hydrauliques, de reculer les digues à grande échelle.

Création de sites à structure riche, comparables aux forêts alluviales à bois tendres: dans le cadre des mesures de protection contre les inondations convenues entre la France et l'Allemagne, il est prévu d'élargir le lit du Rhin sur une longueur d'env. 40 km (PK 176 à 218).

Redynamisation et mise en réseau des écoulements superficiels dans le cadre de la restauration des cours d'eau du système rhénan: décolmature des bras, rétablissement d'anciennes connexions, auto-curage des fonds. Il s'agit d'assurer la pérennité du réseau hydrographique, d'améliorer, voire de rétablir ses fonctions d'échange biologique, de frayère, de réservoir de biodiversité.

Amélioration du libre passage sur les cours d'eau grâce à la construction de dispositifs de franchissement pour les poissons et mesures visant à améliorer la dévalaison des poissons: prise en compte des besoins de certaines espèces, eu égard p.ex. aux débits minimaux, à la vitesse limite, à la hauteur des eaux. Réduction des pertes piscicoles dues aux turbines lors de la dévalaison.
La redynamisation périodique du réseau hydrographique voisin du Rhin, ainsi que le retour à l'inondation, permettront également de restaurer (dans une certaine mesure) les processus de drainage et d'alimentation de la nappe phréatique, processus alternants qui font "respirer" les sols.

Extension des surfaces protégées: d'une manière générale, l'intérêt écologique d'une zone augmente avec sa superficie. En vertu de ce principe, il conviendra, dans la mesure du possible, d'étendre les superficies protégées.

☐ Principales mesures de gestion et de restauration programmées en rive française

Remarque importante:
les programmes de restauration en rive française se localisent à l'intérieur des zones protégées ou en procédure de protection et n'ont pas été cartographiés dans l'atlas du Rhin (catégorie III, cf. légende pour l'Atlas du Rhin). Les dernières mesures ou les mesures actuellement prévues sont les suivantes:

Enrichissement de l'ensemble des zones protégées: classement en réserve naturelle de l'Ile du Rohrschollen (mars 1997) et engagement de la procédure de classement en réserve naturelle
des forêts de Neuhof-Robertsw. L'agrandissement de la réserve naturelle de la Petite Camargue Alsacienne est envisagé. Le projet transfrontalier "Zone Ramsar-Rhin supérieur", actuellement à l'étude ne vise pas à établir une protection juridique complémentaire, l'application de la convention de Ramsar ne représente qu'un instrument de gestion intégrée des zones humides.

Concernant les zones déjà protégées ou en procédure de protection, on note les pourcentages suivants par rapport à la superficie de la bande rhénane du secteur canalisé, déduction faite de l'ensemble bâti:
Zones protégées ou en procédure de protection (catégorie I de la cartographie thématique): 47 %
Zones d'intérêt écologique sans statut de protection (catégorie II de la cartographie thématique): 5 %

Restauration des anciens bras et retour à l'inondation dans le cadre du programme européen Interreg II C sur la protection contre les crues et la restauration des plaines alluviales: application à des sites potentiels de la bande rhénane d'Alsace. Dans le cadre de ce programme on envisage la redynamisation d'anciens bras dans la forêt de Baltzenheim-Marckolsheim ainsi que l'étude de restauration de la zone de Mackenheim-Schoenau en prenant en compte un retour possible à l'inondation.

Prise en compte d'objectifs de restauration écologique dans la mise en application de la convention franco-allemande du 6 décembre 1982: conciliation de la protection contre les crues et d'un retour à l'inondation des forêts alluviales du Rhin. Ainsi pour le polder de la Moder, actuellement disponible pour la rétention des crues, des modalités de gestion écologique vont faire l'objet de procédures complémentaires. Le projet de polder d'Erstein prévoit, dès à présent, la réactivation des Giessen et les submersions écologiques; les travaux sont en cours.

Concernant les polders de la Moder et d'Erstein, il faut noter qu'il n'est pas possible de reconstituer exactement les conditions de mise en eau telles qu'elles existaient avant la canalisation, compte tenu des caractéristiques actuelles des aménagements du Rhin et des divers usages des sites. L'activation des Giessen et les inondations écologiques, intervenant en plus des rétentions de crues, permettent cependant d'en retrouver de nombreux aspects allant de l'écoulement à plein bord des Giessen à partir d'un débit de 1550 m³/s jusqu'à l'établissement d'inondations régulières. Le principe d'une submersion annuelle en saison estivale et en corrélation avec les débits des hautes eaux a été retenu: début de submersion dès que le débit du Rhin dépasse 2000 m³/s, ce qui correspond aux inondations traditionnelles du "Rhin des cerises" par débordement quasi généralisé à l'époque du fleuve non canalisé.

Les résultats du suivi scientifique à mettre en place (analyse des effets sur le milieu naturel) et d'études scientifiques complémentaires pourront permettre un ajustement de ces modalités de gestion écologique.
Vers un programme de restauration intégrée de la bande rhénane côté français

Au-delà des mesures déjà prises ou programmées, des réflexions sont menées pour définir un plan global de restauration de la bande rhénane, côté français.

Objectifs: rechercher le long du Rhin aménagé la continuité d'un ensemble fluvial constitué de milieux plus riches et diversifiés, assurer la pérennité de ces milieux et de leurs principales fonctions écologiques (système Rhin-nappe-zone alluviale).

Fonctions écologiques à restaurer et à pérenner: réservoir de biodiversité, échanges biologiques, régulation des écoulements par l'intermédiaire des champs d'inondation et de leurs biocénoses spécifiques, productivité biologique couplée aux inondations, alimentation de la nappe (après filtration naturelle) et rétablissement de sa dynamique de fluctuation.

Applications à la gestion de l'espace, des ressources et des risques: sylviculture, chasse et pêche, gestion qualitative et quantitative des eaux souterraines, rétention des crues, loisirs.

Transposition sur le terrain: deux axes principaux d'intervention sont à considérer comme un ensemble d’actions coordonnées; il s'agit de la restauration du réseau hydrographique et de la remise en inondation de certaines parties de l'ancien lit majeur.

La restauration du réseau hydrographique
Une étude synthétique sur l'ensemble des possibilités de restauration a été présentée en septembre 1995 par la DIREN-Alsace.

Le premier enjeu est strictement morphologique: il s'agit d'assurer la pérennité du réseau résiduel des Giessen et autres bras. Des actions de décolmatage, de réalisation et de diversification des berges permettront de rétablir certains effets de lisière et d'écoulement typique pour ces cours d'eau avant la canalisation.

Le deuxième enjeu est de connecter ce réseau ancien au fleuve lui-même et à son contre-canal de drainage; il s'agit d'assurer une continuité de milieux diversifiés et de bonne qualité biologique, notamment piscicole. Toutefois, il faut se garder de ne raisonner que par rapport à la faune piscicole. Certains bras de type Altwasser peuvent mériter une conservation en l'état au vu de leurs particularités écologiques.

Le retour à l'inondation de certains massifs forestiers

L’inventaire des sites suggère d’examiner les secteurs endigués couverts par les forêts de Markolsheim-Mackenheim-Schoenau, de Rhinau-Daubensand et d’Offendorf-Dallhunden, Robertsau-La Wantzenau.

L’enjeu écologique de ce retour à l’inondation est important pour le maintien, le long du Rhin, de types forestiers à forte diversité ligneuse et très tolérants aux inondations. Ces surfaces participent ainsi à la protection des populations riveraines contre les crues. Les forêts
alluviales uniquement influencées par la nappe phréatique ne réunissent pas les mêmes qualités de biodiversité.

Sur le secteur à l’aval de Vieux-Brisach, qui n’a pas été marqué par l’érosion historique consécutive à la correction de Tulla, les forêts inondables actuelles représentent encore 10 % de leur superficie initiale, déterminée sur l’atlas du Rheinstrom 1889. Le retour à l’inondation de l’ensemble des surfaces potentielles, inventoriées dans le document du Service de la Navigation de Strasbourg, permettrait de porter ce pourcentage jusqu’à 35 voire 45 %, selon les hypothèses envisagées.

Proposition de mesures de restauration écologique en rive allemande

- retrait des mesures d’aménagement technique, si possible;
- mise au point de schémas d’aménagement des eaux;
- mise au point de plans d’aménagement et de gestion des rives du Rhin;
- usages agricoles plus extensifs dans les zones de rétention;
- prise en considération de l’état futur des conditions d’habitat naturel dans les aménagements forestiers (notamment connexion au régime des inondations du Rhin);
- mise en œuvre d’inondations écologiques dans les zones de rétention;
- décolmatage des bras latéraux;
- élargissement des franges riveraines des cours d’eau;
- entretien et développement des prairies à Molinie, des pelouses moyennement sèches à sèches, ainsi que des sources de type "chaudron phréatique" et des Giessen.

□ Autres mesures dans le cadre transfrontalier franco-allemand

4.2.2 Rhin supérieur septentrional entre Iffezheim et Bingen

Le Rhin supérieur septentrional s’étend sur une longueur de 195 km (PK 334 à 529). La rive française s’étend sur 18 km entre le barrage d’Iffezheim et l’embouchure de l’ancienne Lauter.

4.2.2.1 Description générale de l’état écologique actuel

En aval de la chute d’Iffezheim, dans le secteur approximatif du débouché de la Murg, la pente d’écoulement du Rhin diminue et la zone de ramification se transforme progressivement en une zone à méandres. Le lit du fleuve serpentait initialement dans la basse plaine du Rhin; ses larges boucles ont pratiquement été toutes coupées par les aménagements réalisés entre 1817 et 1878 et la longueur du fleuve a été raccourcie de plus de 70 km. Aujourd’hui, le Rhin coule dans un lit redressé, rétréci par des épis, dont les rives ont fait le plus souvent objet d’un aménagement rigide. De nombreux anciens bras de la frange rhénane, le plus souvent coupés du Rhin par des digues de hautes eaux, témoignent aujourd’hui encore des anciens méandres.
Entre Iffezheim et Mayence (PK 334 à 500), la plaine alluviale s’étend des deux côtés sur une largeur variant entre 4 km et plus de 10 km. Entre Mayence et Bingen (PK 500 à 529), elle est rétrécie par le Rheingau au nord et par les collines de la Hesse rhénane au sud et ne forme plus qu’une bande d’une largeur entre 800 m et 2,5 km.

Entre la chute d’Iffezheim (PK 334) et l’embouchure de la Lauter (PK 354), les zones situées sur la rive gauche du Rhin sont mises, en grande partie, à l’écart des inondations par un système de digues continues érigées à proximité immédiate du Rhin. À hauteur de Seltz, Muthern et Lauterbourg subsiste en certains endroits une bande de surfaces alluviales récentes sur une largeur allant d’env. 100 m à 300 m. Dans la zone de remous de l’embouchure de la Sûre jusqu’à Seltz, on trouve de vastes surfaces alluviales inondables. Sur la rive droite s’étend une bande de zones alluviales récentes sur une largeur allant d’env. 500 m à plus de 1.500 m.

Entre l’embouchure de la Lauter et la zone de Mannheim (env. PK 414), les deux côtés du Rhin sont accompagnés de zones alluviales récentes occupant une frange de 0,5 à 2,5 km de largeur totale, avec des surfaces supplémentaires dans les secteurs des anciennes boucles de type "Altrhein" encore raccordées au Rhin (voir fig. 4.2.2).

Les zones alluviales anciennes sont relativement dispersées et fréquemment soumises à une exploitation agricole. Les affluents du Rhin les plus significatifs ont été rectifiés et aménagés pour permettre l’exploitation agricole et l’urbanisation de la plaine alluviale rhénane sans risque d’inondation. De nombreux cours d’eau à moulins et fossés d’irrigation et de drainage traversent la plaine fluviale.

Dans les zones de concentration humaine sur ce tronçon du Rhin (Karlsruhe, Mannheim-Ludwigshafen, Worms), les agglomérations urbaines et les implantations industrielles s’étendent sur toute la plaine alluviale jusqu’en bordure de l’axe de circulation constitué par le Rhin.

Le tronçon du Rhin en aval de Lampertheim (PK 436) est caractérisé par un cours encore légèrement sinueux et l’aménagement rigide des digues est en partie limité. Le paysage est marqué par la présence de nombreux anciens bras du Rhin qui, pour la plupart, ne sont plus régulièrement alimentés par les eaux du fleuve. Entre Rheindürkheim (PK 452) et le débouché du Ginsheimer Altrhein (PK 493), des fourrés de saules blancs se sont développés sur les surfaces de sédimentation entre les champs d’épis. Dans les zones alluviales récentes, on note la dominance de biotopes de prairies qui ne sont inondables qu’à partir de crues du Rhin d’une récurrence de 10 à 25 ans, en raison de la présence d’un système de digues d’été. Les vastes zones alluviales anciennes sont ici moins fractionnées. Les usages agricoles à grande échelle sont la caractéristique dominante du paysage.

À hauteur de Mayence (PK 496), le Rhin est détourné de son avancée vers l’ouest par le massif moyen du Taunus et s’écoule dans la vallée du Rheingau. Ce tronçon fluvial se distingue par une plaine étroite en rive gauche et la pente directe des flancs du Taunus en rive droite. Des fragments de zones alluviales récentes s’étirent sur une étroite bande le long des rives et sur les îles.

Le tronçon du Rhin supérieur s’achève à Bingen (PK 529).
Fig. 4.2.2: plaine alluviale rhénane - état initial et actuel sur le Rhin supérieur
4.2.2.2 Estimation écologique de l'état actuel

En raison de l'aménagement du Rhin en voie de navigation d'importance internationale et de l'urbanisation expansive, les zones alluviales, qui caractérisaient initialement la vallée fluviale par leur mosaïque de biotopes et leur diversité d'espèces, ne subsistent plus que sur des surfaces restreintes ou sont fortement marquées par l'impact anthropique. Avec leurs sols fertiles, les zones alluviales endiguées sont aujourd'hui en majeure partie vouées à des usages agricoles essentiellement intensifs.

Suite à l'extraction de gravier dans la nappe, de nombreux plans d'eau ont vu le jour sur l'ensemble de la bande rhénane. En plus de la disparition totale des biotopes alluviaux, ces plans d'eau, qui intensifient les activités de loisirs, ont également aujourd'hui des conséquences négatives sur les zones écologiques sensibles voisines.

En aval d'Iffezheim, les zones d'intérêt écologique du débouché de la Sauer (zone alluviale inondable), du bois de Mothorn (zone alluviale ancienne) et d'une partie du débouché de la Lauter jouissent d'un statut de protection. Sur la rive droite, les "Rastatter Rheinauen", zone alluviale inondable encore intacte qui s'étend jusqu'au débouché de la Murg, ainsi qu'une série d'autres sites ont été classés réserve naturelle.

Des deux côtés du fleuve, depuis la région d'Iffezheim jusqu'au sud de Mannheim, dans les secteurs de Lampertheim et de la réserve européenne de Kühkopf-Knoblochsau, la plaine alluviale rhénane renferme quelques groupes de biotopes d'importance nationale, voire même européenne dans certains cas. Entre Bâle et Karlsruhe, d'autres zones étendues de la bande rhénane sont proposées pour être déclarées zones RAMSAR.

Les biotopes individuels de grande valeur écologique sont plus ou moins nombreux, mais sont, pour la plupart, de très faible superficie et fortement dispersés sur l'ensemble de la plaine alluviale rhénane entre le débouché de la Lauter (PK 354) et Mannheim (PK 422). Dans le secteur du rebord de terrasse dit "berge haute", on note la présence caractéristique de certains sites de l'ancienne dépression marginale dignes de protection et offrant un bon potentiel de renaturation.

Plus vers le nord (PK 422 à 500), l'utilisation agricole des terres occupe de grandes surfaces et a remplacé les anciens biotopes alluviaux. Les connexions entre les biotopes significatifs des zones alluviales récentes et les biotopes individuels disséminés dans la plaine sont très limitées. Ce morcellement partiel, plus ou moins prononcé, des biotopes d'intérêt écologique est préjudiciable à la faune et la flore et conduit à un isolement des habitats naturels. Il n'est pas rare que les zones de raccordement des anciens bras aux fleuves soient soumis à une sédimentation telle qu'elles forment des obstacles à la migration des organismes aquatiques, notamment des espèces piscicoles phytophiles et que les zones importantes de régénération et de reproduction ne soient plus accessibles. On peut citer ici comme exemple le "Schusterwörther Altrhein" situé en rive droite du Rhin.

Les cours d'eau à moulins et les fossés d'irrigation sont principalement gérés sur la base d'une ancienne législation des eaux. Le passage des poissons et du macrozoobenthos est souvent rendu impossible. Ces cours d'eau sont en partie marqués par l'eutrophisation.

Les agglomérations urbaines de Mannheim/Ludwigshafen et de Mayence/Wiesbaden dépassent largement les limites de la frange rhénane. De nombreuses espèces animales et végétales ne peuvent ainsi plus se propager sur l'axe longitudinal de la vallée fluviale.
Entre Mayence et Bingen (PK 500 à 529) se trouvent de nombreuses îles du Rhin protégées. Parmi celles-ci, les zones alluviales Fulder Aue, Illmer Aue, Rüdesheimer Aue et Marienneau sont des zones Ramsar. Les biotopes d'intérêt écologique situés notamment dans les zones alluviales récentes représentent des points vitaux pour la migration des oiseaux.

4.2.2.3 Objectifs de développement

"L'écosystème du Rhin doit retrouver un état tel que des espèces supérieures jadis présentes dans le Rhin mais aujourd'hui disparues (p.ex. le saumon) puissent se réimplanter dans ce grand fleuve européen". Il faut ajouter à cela que le Rhin et ses zones alluviales doivent atteindre un état écologique tel que les biocénoses typiques du fond du lit, de ses rives et de la plaine inondable puissent s'y développer.

Sont également envisagées comme objectifs de développement la redynamisation du potentiel des biotopes existants - notamment dans les zones alluviales anciennes - et la mise en réseau des zones d'intérêt écologique.

Objectifs de développement dans les zones alluviales récentes (plaine inondable)
Veiller à ce que l'étendue des surfaces bâties et consolidées n'augmente pas dans les zones alluviales inondables par rapport à la situation actuelle. Là où c'est possible, retirer les constructions et les ouvrages de consolidations (p.ex. déplacement de fermes isolées).

Gérer, sous forme de prairies permanentes, les surfaces agricoles comprises dans les zones alluviales inondables en les soumettant à une exploitation extensive respectueuse de l'environnement. Restreindre les surfaces labourées aux parties des zones alluviales très rarement inondées. Renforcer la richesse structurale des zones alluviales inondables dans les secteurs à usage agricole, p.ex. en créant et en préservant les haies, bosquets, petits cours d'eau et cuvettes humides.

Préserver et développer les éléments naturels typiques des zones alluviales, comme p.ex. les forêts alluviales à bois tendres et à bois durs, les forêts marécageuses, les roselières, les anciens bras et les cours d'eau phréatiques de type Giessen ("Brunnenwasser"), en nombre et en superficie suffisants et selon une répartition optimale sur l'ensemble du cours du Rhin. Ces éléments sont soit d'origine naturelle, soit le résultat de mesures de renaturation ciblées. Leur gestion doit être respectueuse de l'environnement et ne doit pas être perturbée par les usages périphériques;

Restaurer et développer, dans le respect de l'environnement, les eaux superficielles des zones alluviales du Rhin, telles qu'anciens bras, points d'eau résiduels, plans d'eau de gravière, sur la base de plans de développement.

Parallèlement aux habitats alluviaux typiques, certains biotopes issus de modifications anthropiques du régime des eaux (p.ex. zones en conditions extrêmes d'assèchement) peuvent néanmoins être jugés dignes de protection en raison de leur rareté et de leur configuration.

Veiller à ce que les biotopes du paysage naturel et du paysage marqué par les activités humaines se complètent dans la plaine alluviale rhénane et constituent un système en réseau optimal sur l'ensemble du cours du fleuve.

Créer des habitats naturels adéquats pour promouvoir le développement de biocénoses typiques du milieu alluvial rhénan et assurer la présence de populations stables des espèces indi-
catrices typiques de la plaine alluviale rhénane (p.ex. petit gravelot, castors sur le Rhin supérieur).

Faire en sorte qu’en de nombreux endroits les crues puissent à nouveau déborder librement. Dans ce but, reculer vers les terres, en tout lieu possible, les ouvrages de protection contre les inondations. Dans l'ensemble, le pourcentage de zones alluviales inondables doit sensiblement augmenter par rapport à la situation actuelle.

Veiller à ce que se développe à grande échelle, dans certaines zones peu urbanisées, un paysage alluvial "naturel originel", dans la mesure où il n’en résulte pas un impact négatif sur les niveaux de crue. Ces surfaces sont soumises à la dynamique fluviatile et peuvent ainsi subir de fortes modifications sous l’impact de crues de grande ampleur. Attribuer à ces zones un statut de protection élevé.

Objectifs de protection dans les zones alluviales anciennes
Veiller à ce que les biotopes du paysage naturel et du paysage marqué par les activités humaines se complètent dans la plaine alluviale rhénane et constituent un système en réseau optimal sur l’ensemble du cours du fleuve.

Parallèlement aux habitats alluviaux typiques, certains biotopes issus de modifications anthropiques du régime des eaux (p.ex. zones en conditions extrêmes d’assèchement), peuvent néanmoins être jugés dignes de protection en raison de leur rareté et de leur configuration.

Restaurer et développer, dans le respect de l’environnement, également dans les zones alluviales anciennes, les eaux superficielles des zones alluviales rhénanes telles qu’anciens bras, points d’eau résiduels et plans d’eau de gravière, sur la base de plans de développement.

Viser à mettre en place, en tenant compte des nécessités écologiques, une réglementation sur les débits réservés dans les affluents du Rhin.

Préserver et développer, en raison de leur rareté, les sites de l’ancienne dépression marginale lorsqu’ils recèlent des biotopes potentiels.

Objectifs de développement dans le lit du fleuve

Le lit du fleuve doit offrir en de nombreux endroits une diversité structurelle naturelle (p.ex. bancs, îlots, cuvettes) qu’il convient de préserver et de promouvoir par le biais de mesures d’entretien correspondantes. Les multiples structures d’origine anthropique existantes (p.ex. les champs d’épis) complètent la diversité structurelle naturelle lorsqu’elles sont conçues et entretenues selon une approche écologique.

Dans le Rhin et ses affluents, il s’agit de promouvoir la réimplantation de nombreuses bioécosystèmes typiques du Rhin. Les populations d’organismes indicateurs tels que le saumon et la truite de mer doivent pouvoir s’y régénérer par reproduction naturelle. A cet effet, il est indispensable de renforcer les efforts visant à rétablir le libre passage dans les zones d’embouchure souvent aménagées des affluents potentiellement importants pour la reproduction des espèces piscicoles migratrices, p.ex. la Wisper et la Weschnitz.

4.2.2.4 Principales mesures de restauration écologique

Préserver et redynamiser
Pour atteindre les objectifs de développement mentionnés, il s'impose de préserver et de redynamiser les biotopes potentiels dans la plaine alluviale rhénane. Il convient donc de placer sous protection des zones supplémentaires offrant un intérêt écologique particulier. Pour garantir à long terme le développement à grande échelle des biocénoses de nombreux biotopes isolés, il s'agit de mettre en place des structures de connexion pour que de nombreuses espèces puissent à nouveau migrer librement dans le corridor de la plaine rhénane.

Extensifier l'exploitation agricole
Les usages agricoles intensifs (p.ex. tabac, asperges, mais) doivent à long terme être retirés des zones alluviales récentes et des surfaces requises pour la protection contre les inondations. On peut se fonder sur des analyses de structures agraires pour tenter de trouver des solutions sociales (p.ex. échange de terres après abandon d'un domaine d'exploitation ou dans le prolongement de procédures de remembrement; mise au point de Stratégies de marché etc.). Dans le champ d'application du Programme intégré pour le Rhin, les usages agricoles devraient globalement s'inspirer des principes actuellement reconnus de la culture intégrée. Des programmes de subventionnement appropriés sont à appliquer ou à mettre en place.

Promouvoir les essences d'arbres indigènes en sylviculture
Il convient de remplacer progressivement dans les futures zones de rétention des crues et de recul des digues les peuplements forestiers actuellement exploités lorsqu'ils se composent d'essences inadaptées à l'inondation. Dans la mesure où sont prévues des mesures de rétention des crues ou de recul des digues, les peuplements mûrs pour l'abattage peuvent dès à présent être remplacés par des essences indigènes adaptées aux conditions locales. Dans les zones alluviales anciennes, les forêts doivent être exploitées selon les règles reconnues d'une sylviculture écologique.

Reculer les digues
Les surfaces adaptées à un recul des digues doivent être réservées comme sites de protection contre les inondations et de restauration des zones alluviales. Il convient d'empêcher toute nouvelle construction dans ces zones.

Améliorer les conditions d'écoulement
Sous l'effet d'interventions anthropiques multiples, de nombreux obstacles à l'écoulement des eaux sont apparus à différents endroits dans les zones alluviales récentes. Les routes et les chemins surélevés, les remblais des digues, le trop faible dimensionnement des passages hydrauliques et des ponts ont eu pour conséquence de couper les cours d'eau alluviaux (tels que fossés, anciens bras, rivières de type Giessen) ou de les séparer du Rhin par des chemins de halage. Des gués, ponts et passages hydrauliques doivent être construits ou agrandis pour permettre le libre écoulement des eaux et réduire l'envasement.
Renaturer les affluents du Rhin
Les micro-centrales et les barrages de rétention sont à équiper de rivières artificielles ou de passes à poissons pour assurer les connexions biologiques. Il convient de retirer en tout lieu possible les aménagements techniques des rives. Les bandes riveraines sont à développer selon des principes écologiques.

Réalimenter en eau la dépression marginale
Dans la mesure où les sites peuvent être restaurés, les dépressions marginales typiques doivent être réactivées par des mesures ciblées de gestion des fossés, d’irrigation des prairies, d’abandon d’exploitation intensive, de développement de forêts marécageuses et par d’autres mesures similaires appropriées.

Mettre en réseau les biotopes
La mise en réseau de biotopes doit permettre à la fois de relier le long du fleuve les zones alluviales récentes et de créer des passerelles entre les biotopes existants et ceux devant voir le jour dans la plaine rhénane. Les structures naturelles telles que cours d’eau, vergers traditionnels à hautes tiges, haies, favorisent ce processus et doivent donc être entretenues et développées.

Il convient, dans les grandes zones d’agglomération urbaine, d’étendre les bandes de verdure, d’aménager les cours d’eau et d’utiliser les parcs et les jardins comme éléments de connexion, afin de limiter l’effet de barrière du à ces agglomérations dans la plaine rhénane.
4.3 Rhin moyen

4.3.1 Description générale de l'état écologique

Le tronçon du Rhin moyen, d'une longueur de 120 km, entre Bingen (PK 530) et Bonn (PK 655) est caractérisé par la vallée du Massif schisteux rhénan qui, en certains endroits, n'atteint plus qu'une largeur de 150 m. Les coteaux abrupts ainsi que 15 îles au total sont typiques de la vallée du Rhin moyen. Outre ces conditions géomorphologiques, le Rhin moyen présente, à l'opposé des autres tronçons du Rhin, une pente moyenne nettement plus forte avec des vitesses d'écoulement très rapides. Le régime hydrologique du Rhin moyen est essentiellement influencé par les niveaux d'eau et la dynamique du Rhin caractérisée par une variation entre submersion et exondation des îles, phénomène accompagné de processus de sédimentation et d'érosion, ainsi que par des niveaux variables de la nappe souterraine.

A l'opposé du Rhin supérieur, le Rhin moyen dispose de par nature, exception faite de quelques îles, d'un lit uniforme sans grands méandres. Les travaux de régularisation (épis et défecteurs) se limitent donc à certains endroits où les conditions de courant et de navigation étaient défavorables.

Les riverains du Rhin moyen ne sont généralement pas protégés. Il n'existe de dispositifs de protection contre les inondations que dans le bassin de Neuwied. La ville de Neuwied, située à un bas niveau, a érigé les digues du Rhin entre 1927 et 1931. Par ailleurs, à certains endroits, le profil d'écoulement du Rhin a été rétréci (p.ex. murs sur les rives) suite à l'aménagement des routes fédérales B 9 et B 42 sur les rives gauche et droite du Rhin.

Pour une crue bicentennale, le champ d'inondation du Rhin moyen s'étend sur environ 35 km².

4.3.2 Estimation écologique de l'état actuel

4.3.3 Objectifs de développement

Le but poursuivi est de promouvoir la coexistence de micro-sites et de petits sites sur les coteaux de la vallée du Rhin moyen. L'ensemble des composants hydrographiques, tant du Rhin même que des affluents, doivent conserver leur fonction de zones humides et être préservées aux fins de la mise en réseau des biotopes. Ceci concerne notamment les zones alluviales riveraines et les îles, éléments caractéristiques du Rhin moyen, ainsi que le développement de la zone alluviale du massif moyen. Par ailleurs, on s'efforcera d'améliorer la qualité de l'eau du Rhin et de ses petits affluents.

En principe, les objectifs de développement définis pour le Rhin supérieur s'appliquent également au Rhin moyen. La vallée du Rhin moyen étant toutefois encaissée, les mesures d'amélioration écologique y sont très restreintes.

L'objectif de développement est donc de préserver l'écosystème dans cette vallée encaissée et ses vallées latérales qui forment une unité naturelle et de le développer compte tenu de la forte pression exercée par les différents usages comme axe de trafic (deux routes, deux voies de chemin de fer, voie navigable), espace urbanisé et économique. Vu le peu d'espace dont on dispose et les multiples usages interdépendants, il n'est pas possible de formuler ni de mettre en œuvre des objectifs de développement spécifiques. Il convient pour cette raison d'élaborer un schéma général qui tienne compte des conditions particulières du Rhin moyen, entre autres comme éventuel héritage culturel et naturel mondial de l'UNESCO.

4.3.4 Principales mesures de restauration écologique

- Rétablir le libre passage des poissons et micro-organismes aquatiques dans les affluents, entre autres en améliorant le libre passage à leur confluence avec le Rhin
- Mesures dans le cadre des travaux de planification de l'entretien des réserves naturelles.
4.4 Rhin inférieur

4.4.1 Description générale de l'état écologique

Le Rhin inférieur est délimité par la frontière du Land de Rhénanie-Palatinat, celle des Pays-Bas et le rebord de la terrasse rhénane (PK 640 à 857). Juste avant Bonn, il quitte le massif montagneux et entre dans une plaine qui s'aplaitit de plus en plus vers l'aval. Le Rhin inférieur est un paysage géologique récent, constitué à l'ére quaternaire, dont la forme actuelle est essentiellement marquée par l'action (ancienne) de la dynamique fluviale du Rhin avec ses phases d'inondations et de sédimentation épisodiques. De nombreux géotopes dignes de protection, p.ex. terrasses et anciens chenaux du fleuve, sont les témoins de cette évolution historique.

L'état actuel d'aménagement est le résultat d'une suite de régularisations remontant jusqu'aux 17 et 18ème siècles. Les ramifications fluviales et les boucles étroites ont été supprimées (à hauteur de Rees, Wesel, Bislich), les rives consolidées et des épis mis en place.

Les digues de protection des crues marquent le bas pays. Malgré les usages intensifs auxquels sont soumis le fleuve et une grande partie de ses rives et zones alluviales, ce tronçon, qui traverse la Rhénanie-du-Nord-Westphalie, joue un rôle important dans le cadre de la protection de la nature et de l'écologie. La preuve en est que de grandes parties du Rhin inférieur ont p.ex. été déclarées zones humides d'importance internationale en vertu de la Convention de RAMSAR et que de nombreuses autres sont classées réserves naturelles.

La partie méridionale du tronçon, qui va de la frontière du Land de Rhénanie-Palatinat à Bonn (PK 655), est très resserrée par l'urbanisation qui arrive jusqu'à proximité des rives. Plus en aval, la zone va en s'élargissant jusqu'à l'embouchure de la Sieg, qui est quasi naturelle. Jusqu'au sud de Cologne, on note sur le cours du Rhin une alternance de zones urbannées et de zones ouvertes. La bande alluviale reste cependant relativement limitée. A Cologne, les zones alluviales sont à nouveau très enserrees; ensuite, elles s'élargissent entre Cologne (PK 686) et Düsseldorf (PK 745) et les parties en demi-cercle de la basse terrasse rappellent le cours des anciens méandres du Rhin. Les zones d'agglomérations alternent avec le paysage naturel. A Düsseldorf, une urbanisation dense s'étend jusqu'aux limites des zones alluviales. Le tronçon compris entre Düsseldorf et Duisbourg (PK 780) est à nouveau caractérisé par une succession de zones ouvertes et d'agglomérations. Jusqu'à Wesel (PK 813), le cours du Rhin présente sur sa rive droite à la fois des éléments agricoles et des agglomérations. Sur sa rive gauche, les constructions deviennent en revanche nettement plus rares et l'on entre dans un paysage fortement marqué par l'exploitation agricole. Le débouché de la Lippe, comme celui de la Sieg, est une zone relativement proche de l'état naturel. Entre Wesel et Rees (PK 838), les éléments naturels du paysage dominent et l'on reconnaît encore facilement le rebord de la basse terrasse. La situation change au nord de Rees, où l'on retrouve certes des éléments du paysage naturel, mais où le rebord de la basse terrasse n'est plus clairement reconnaissable. L'ancien champ d'inondation naturel du Rhin s'ouvre largement sur le delta et rejoint la Niers et l'IJssel.

On peut également considérer comme éléments distinctifs, bien que d'origine non naturelle, les larges zones d'extraction de gravier au nord du Rhin inférieur. La région au nord de Wesel notamment est caractérisée par de grands plans d'eau artificiels.
Par ailleurs, il existe encore quelques anciens bras et points d'eau résiduels en arrière des digues ainsi que des petits plans d'eau occupant des niches d'affouillement qui résultent d'anciennes ruptures de digues.

La forêt alluviale naturelle a pratiquement disparu. Les zones alluviales se caractérisent par leur couverture structurée comportant comme éléments typiques des rives abruptes et des bancs de sable, d'anciens bras du fleuve et des chenaux de crues. La plaine alluviale rhénance recèle également des îles plus sèches et des basses terrasses.

Protection contre les inondations

En situation de niveau moyen, le fleuve s'écoule dans un lit d'une largeur d'au moins 300 m. En période de crue, la profil d'écoulement des eaux varie entre env. 500 m à l'endroit le plus étroit à env. 4.000 m à l'endroit le plus large, en fonction de la localisation des digues.

Sur le Rhin inférieur, on trouve des dispositifs de protection contre les inondations sur une longueur de 330 km. Les dispositifs protègent une surface de 1.500 km² contre les crues extrêmes. Le risque potentiel est particulièrement important dans cette région du fait des affaissements de terrain dus à l'exploitation de mines. Il a donc été nécessaire de rehausser les digues sur un tronçon de 30 km; elles atteignent à présent une hauteur de 15 m.

Entre les dispositifs de protection contre les inondations, le Rhin peut encore inonder une surface d'env. 302 km².

4.4.2 Évaluation écologique de l'état actuel

Suite à l'endiguement et sous l'effet des usages anthropiques, la composition végétale initiale du Rhin inférieur a fortement changé.

L'actuelle plaine alluviale du Rhin inférieur est caractérisée par une exploitation agricole plus ou moins étendue. L'intensification des usages, notamment au cours des dernières décennies, a occasionné un appauvrissement biologique des prairies permanentes et une transformation rapide des prairies permanentes en cultures labourées. Les gigantesques forêts alluviales qui s'étendaient à l'origine (forêts de saules blancs et de peupliers noirs entre autres) avaient déjà quasiment disparu vers la fin du 13ème siècle sous l'effet de défrichements systématiques. Il n'en subsiste aujourd'hui plus que quelques fragments de faible superficie. Les forêts de feuillus qui occupent aujourd'hui les sites potentiels de forêts alluviales à bois tendres ou à bois durs sont en grande partie des plantations de peupliers hybrides pauvres en essences (cf. figure 4.4.2).

Dans la zone que l'endiguement et le creusement du lit du fleuve ont mis à l'abri des crues et des eaux de pression, on reconnaît à la brunification et à la décalcification des couches supérieures sur env. 0,5 m de profondeur l'amorce d'une transformation du sol. Il ne s'agit plus ici à proprement parler de véritables sols alluviaux mais déjà de stades précédant la formation de sol brun.

Les anciens bras qui subsistent sur le cours aval du Rhin inférieur sont menacés de disparition, entre autres par la progression de l'érosion du fond du lit. De nombreux groupements végétaux aquatiques se développent dans les plans d'eau ouverts. Dans les anciens bras, on note en particulier la présence de nénuphars, du limnanthème et de potamots.

50
Evolution du paysage marqué par l'histoire humaine

Zones alluviales du Rhin et de la Niers
Paysage de vallée fluviatile
espaces naturels
1/2/4/6/9 etc.
sols alluviaux et sols bruns
riches en nutriments
submergés périodiquement
exempt de submersion

Depuis quelques décennies, l'espace est sensiblement modifié par l'attraction de sable et surtout de gravier, de sorte qu'en de nombreux endroits, le profil naturel du territoire, la structure des sols et les sites abritant de nombreuses communautés animales et végétales manacent sont détruits.
Du fait de la construction d'ouvrages tels qu'épaves et renforcement des berges, la zone à proximité immédiate du Rhin perd de plus en plus son caractère naturel.

Objectifs de développement

zone humide cours aval du Rhin inférieur

Fig. 4.4.2: évolution du paysage marqué par l'homme sur le Rhin inférieur et objectifs de développement
Les zones alluviales récentes du Rhin inférieur ont connu en partie d'importantes modifications dues à l'extraction intensive de sable et de gravier. De grandes surfaces d'eau ont ainsi vu le jour au cours des dernières années, notamment au nord de Wesel. Elles sont souvent très profondes et leurs rives trop abruptes pour permettre le développement d'une zonation naturelle de végétation. On constate un appauvrissement morphologique avancé. L'extraction de gravier et le remplissage consécutif des carrières, p.ex. par des remblais, ont entraîné la formation de sols artificiels.

Certains poissons migrateurs anadromes, comme p. ex. l'esturgeon, la grande alose, l'alose faînte etc. qui séjournent principalement en mer et ne remontent dans les fleuves que pour frayer, ont complètement disparu sous l'effet des dégradations de leurs habitats.

Raccorder les excavations au Rhin ne représente qu'une compensation partielle, en aucun cas équivalente aux eaux affluentes à l'état naturel.

On note depuis 1969 une augmentation des espèces macrozoobenthiques. La poursuite de cette tendance positive dépend essentiellement d'une amélioration des zones riveraines.

Suite à la stabilisation du cours, aux opérations de correction et à l'accélération consécutive du courant, le Rhin s'est enfoncé toujours plus profondément dans son lit. L'érosion permanente du fond (env. 1,5 cm/an) occasionne un abaissement progressif du niveau des eaux souterraines dans le bassin d'influence et donne lieu à des problèmes écologiques majeurs dans les zones alluviales et leurs eaux annexes et dans d'autres biotopes sensibles.

On trouve de nombreuses zones dignes de protection dans le lit majeur endigué, p.ex. une végétation riveraine spontanée sur les berges non aménagées, des fragments de forêts alluviales, des roselières ou de larges prairies permanentes en partie traversées de haies, bosquets ou rangées d'arbres.

Des surfaces dignes de protection se trouvent également derrière la digue principale.

Zones protégées en vertu de la convention de RAMSAR
La zone humide d'importance internationale "Unterer Niederrhein", qui s'étend sur env. 25.000 ha, englobe pratiquement toute la plaine alluviale rhénane récente à partir de Duisbourg. Des noyaux de protection, d'une superficie de plus de 10.000 ha au total, sont classés réserves naturelles.

Les prairies permanentes ont en partie une fonction écologique internationale importante en tant que zones de nidification et d’hivernage pour quelques oiseaux aquatiques et oiseaux chanteurs et en tant que zones d’huiernage pour plus de 150.000 oies nordiques (oie rieuse et oie des moissons).

Ces zones sont en relation avifaunistique étroite avec les Pays-Bas. De nombreuses espèces ont également pu devenir autochtones dans le Rhin inférieur. Les espèces d'oiseaux nicheurs les plus caractéristiques de ces vastes prairies sont le harpe à queue noire, le chevalier gambette, le vanneau huppé et l'huîtier pie. Les effectifs sont cependant en baisse sous la pression croissante des usages agricoles.

Protection contre les inondations
Le champ d’inondation naturel a été fortement restreint suite aux aménagements effectués à la fin du siècle passé. Même après 1945, une surface de 120 km² a été endiguée rien que dans le district de Kleve.
Fig. 4.4.3: nouveaux espaces de rétention sur le Rhin inférieur
4.4.3 Objectifs de développement

Les zones alluviales du Rhin, qui sont épisodiquement inondées, sont caractérisées par l'exploitation en partie extensive de prairies permanentes. De nombreux types de biotopes naturels ou semi-naturels, tels qu'anciens bras, chenaux de crues et roselières, et des surfaces importantes de forêts alluviales, rangées d'arbres et haies animent et structurent le paysage. Les cultures permanentes, exploitées selon des méthodes adaptées à l'environnement, se limitent aux terrasses à l'abri des crues. Les excavations présentes dans les zones alluviales sont soumises à un développement écologique. Dans les zones centrales réalimentées en eau, les espèces typiques des prairies humides peuvent reconstituer durablement des populations viables. Les forêts alluviales, occupant parfois de grandes surfaces, ne sont pas soumises à une exploitation sylvicole (forêts alluviales à bois tendres) ou ne le sont que selon les principes d'une gestion écologique (forêts alluviales à bois durs).

Il est impératif de veiller à ce que ces zones soient périodiquement inondées au rythme des variations naturelles du débit. Les inondations engendrent des processus de sédimentation et d'érosion. Elles donnent lieu à un cycle continu d'apport et de retrait de substances et à une restructuration permanente au sein du système. Les processus d'érosion peuvent faire apparaître des mares, des étangs et des rives abruptes ou donner naissance à d'anciens bras ou des points d'eau résiduels lorsque le cours vient à se déplacer. On assiste alors à la formation de sols alluviaux typiques.

Les plans d'eau abritent des groupements à feuilles nageantes et à potamots qui, dans les secteurs de berges, passent à des groupements pionniers amphibies, à des zones laîches et des roselières.

Même si les inondations étendues n'atteignent plus quelques zones, ces dernières sont néanmoins fortement influencees par les variations de niveau d'eau du fleuve grâce au raccordement à la nappe phréatique.

La réduction de l'érosion verticale, phénomène qui a pris des proportions menaçantes entretemps, est un volet essentiel de la politique de préservation et d'amélioration des zones d'intérêt écologique. Un plan intégré s'impose ici.

En optant pour un usage agricole extensif des prairies permanentes, on garantira la préservation des habitats de l'avifaune hivernante, des espèces de passage et des oiseaux de prairie nicheurs.

Protection contre les inondations
Le "Projet global Rhin en Rhénanie-du-Nord-Westphalie - protection contre les inondations, navigation et écologie" - fixe des objectifs de planification et mesures visant à préserver et reconquérir de vastes surfaces alluviales et inondables. Il est prévu de préserver les structures et habitats rares, d'améliorer et/ou rétablir la communication entre les anciens bras et le fleuve, de développer et/ou restaurer la forêt alluviale. Les digues doivent être mises en retrait et/ou des espaces de rétention créés sur les 11 sites suivants (cf. figure 4.4.3).

Bylerward (720 ha/30 millions m³), Lohrwardt (500 ha/20 millions m³), Ille de Bislich (1100 ha/50 millions m³), Orsoy-Land (220 ha/10 millions m³), Mündelheim (150 ha/5 millions m³), Ilvericher Bruch (600 ha/25 millions m³), Itter-Himmelgeist (60 ha/2 millions m³), Monheim (200 ha/8 millions m³), Worringer Bruch (600 ha/13 millions m³), Cologne-Langel (500 ha/10 millions m³), Niederkassel (35 ha/1 million m³).
Ces surfaces sont le plus souvent des réserves naturelles ainsi que des surfaces agricoles et sylvicoles. À l’état actuel, on pourrait retenir env. 175 millions m³ d’eau sur une surface de 47 km².

4.4.4 **Mesures prioritaires d’amélioration écologique**

- Mesures de lutte contre l’érosion du fond (réduction)

- Mesures écologiques visant à optimiser la protection contre les crues et contre l’impact de la navigation, p.ex. en reconquérant des surfaces inondables, en renaturant des cours d’eau, en désimpléabilisant des surfaces, en laissant s’infiltrer les eaux et en procédant à une agriculture et sylviculture adaptée aux sites. (L’espace de rétention “Orsoy-Land” est déjà en cours d’aménagement).

☐ **Préserver et développer:**

- les cuvettes inondables, anciens bras, niches d’affouillement et roselières

- Aménagement écologique des excavations, notamment raccordement des anciens bras au Rhin et intégration des excavations en leur donnant la forme d’anciens bras

- les zones alluviales en partie livrées à des processus de succession naturelle

- les forêts alluviales dans leur cadre rhénan

- les prairies permanentes humides par retour des eaux, extensification durable et conversion de surfaces cultivées en prairies permanentes

- les prairies grasses et sèches, riches en espèces, les pelouses et les pâturages non fumés couvrant les sols sablonneux et les digues, notamment en réduisant les apports d’engrais

- les prairies permanentes compartimentées par les arbres et les haies (Düffel, vallée de Momm) et les anciens vergers traditionnels

- les zones centrales, si possible exemptes de perturbations, pour l’hivernage des oiseaux limicoles et des oiseaux aquatiques, et interdites à la chasse, la pêche et au tourisme

- les habitats pour la faune piscicole (compte tenu de la diversité des types d’habitat et des cycles biologiques).
4.5 Delta du Rhin

4.5.1 Etat écologique actuel

Le delta du Rhin, la zone située entre la frontière des Pays-Bas et la mer, a subi de profondes transformations au cours des derniers siècles. La construction de digues d’hiver (depuis l’an mil env.) a fait passer la zone submersible de quelques kilomètres à quelques centaines de mètres de largeur. Les niveaux d’eau ont augmenté entre les rives. Avec la mise en place de digues d’été (depuis 1800 env.) le long du lit mineur, les inondations se sont raréfées dans le lit majeur, permettant une exploitation agricole pendant de longues périodes. Par ailleurs, en situation de crue, l’écoulement des eaux est plus lent ce qui, à la suite de la construction des digues, a donné lieu au dépôt d’une épaisse couche argileuse recouvrant désormais le relief changeant initial du lit majeur. Sous l’effet des épis (installés à partir de 1850 env.), le lit mineur est devenu plus profond et plus étroit. Des barrages ont été mis en place sur le Nederrijn-Lek pour assurer une profondeur suffisante pour la navigation et pour répartir le débit entre les trois bras du Rhin (Waal, IJssel et Nederrijn-Lek). Les extractions de sable, argile et gravier ont modifié les caractéristiques morphologiques du lit mineur et du lit majeur. Enfin, la qualité des sédiments qui sont transportés avec les eaux du fleuve et qui se déposent par sédimentation dans le lit majeur, s’est détériorée.

Au cours des années soixante-dix, la mauvaise qualité des eaux entravait sensiblement la réimplantation d’une faune et d’une flore caractéristiques et diversifiées. Les mesures de dépollution engagées depuis ont fait nettement baisser les concentrations de métaux lourds, bien que les valeurs limites visées n’aient pas encore été atteintes. Les concentrations d’HPA et de PCB ont également reculé, mais des quantités importantes sont toujours accumulées dans les couches du fond du fleuve. Ceci pose un gros problème, notamment dans la delta du Rhin proprement dit que l’on peut caractériser de bassin de sédimentation, étant donné que du fait de l’erosion dans les tronçons du Rhin en amont des sédiments pollués sont et seront à l’avenir transportés par les eaux. Les améliorations obtenues sur le Rhin en matière de qualité des eaux sont plus importantes que sur la Meuse. La qualité des eaux du Rhin ne semble visiblement plus faire obstacle à la réintroduction d’espèces, mais peut encore perturber la reproduction de certaines d’entre elles. Si l’on souhaite réintroduire durablement les espèces caractéristiques, il s’impose d’améliorer plus encore la qualité des eaux, bien que l’obstacle majeur à la réimplantation de ces espèces dans les grands fleuves soit l’absence d’habitats en nombre et en variété suffisants.

Aujourd’hui, les surfaces naturelles occupent env. 15 % de l’espace fluvial actuel (10.000 ha). Depuis 1985, quelques centaines d’hectares sont venus s’ajouter à la suite de mesures de développement écologique. Grâce à des mesures de restauration, le caractère originel des espaces naturels existants a pu être preservé sur quelques centaines d’hectares. La longueur des tronçons riverains à structure naturelle est encore restreinte aujourd’hui. Pour ce qui est des forêts alluviales sur les fonds plats du lit mineur, les objectifs de restauration sont loin d’être atteints, puisqu’il n’existe qu’une seule rigole latérale alimentée par les eaux. Ce constat explique la faible présence d’espèces telles que l’inule britannique, le peuplier noir et le barbeau.

Depuis 1985, plusieurs barrages ont été équipés de passes à poissons. La Meuse est devenue pratiquement franchissable sur tout son cours par les poissons migrateurs grâce à la construction de passes à poissons sur 5 des 7 barrages (Linne (1991), Lith (1992), Roermond, Belfeld (1993) et Sambeek (1994)). Les travaux n’ont pas été aussi rapides sur les trois barrages du
Rhin (dans le Nederrijn-Lek: Driel, Amerongen et Hagestein); les plans sont cependant en phase de préparation. Six passes à poissons ont été installées sur l'Overjisselse Vecht, permettant le libre passage des poissons sur l'ensemble de ce fleuve. Les facteurs entravant aujourd'hui le retour de poissons migrateurs tels que le saumon et la truite de mer sont actuellement les obstacles à la remontée depuis la mer, les passes à poissons non achevées et le manque de frayères en nombre suffisant à l'amont.

La protection de la nature a démarré aux Pays-Bas au début des années 1900. La Naardemeer est considérée comme l'une des premières réserves naturelles. Son classement est intervenu à la suite de plans prévoyant d'en faire une décharge pour la ville d'Amsterdam. L'achat de cette zone grâce au rassemblement de fonds privés a permis de faire échouer cette tentative; c'est ainsi qu'a vu le jour la protection de la nature aux Pays-Bas. Ce type de protection de la nature a été appliqué aux Pays-Bas jusqu'au début des années 80. Les zones acquises sont gérées par des institutions privées, telles que la "Vereniging Natuurmonumenten" (association pour la conservation des monuments naturels aux Pays-Bas) ou par une des 12 "Provinciale Landschappen" (sites protégés des provinces) ou encore par la "Staatsbosbeheer" (service public de gestion des forêts).

Vers le milieu des années 80, on a progressivement pris conscience aux Pays-Bas qu'il ne suffisait plus d'acheter et de s'efforcer de gérer le mieux possible des zones au sens d'une protection de la nature. En même temps, les impacts extérieurs devenaient trop importants. Le plan "Ooievaar" (1986) a donné le signal d'une réorientation, notamment pour les bassins des grands fleuves. Le terme "développement de la nature" est né. Ce terme a été ancré comme tâche administrative dans le programme national 'Nature' (1990) et il a été défini comme objectif prioritaire de mettre en place une 'Structure Ecologique Principale'. Les grands fleuves, en tant qu'artères écologiques, jouent un rôle important dans la poursuite de cet objectif sur une grande partie du territoire des Pays-Bas.

4.5.2 Evaluation de la situation actuelle et objectifs de développement

Un état-objectif a été défini permettre d'évaluer la situation actuelle. Celui-ci se fonde sur la répartition des biotopes et des espèces. On peut ainsi procéder à un contrôle quantitatif. En résumé, l'état-objectif pour l'environnement naturel de la région fluviale se présente comme suit:

Les digues d'étoile font défaut et le lit majeur est en moyenne un mètre plus bas qu'il ne l'est actuellement. Un réglage des retenues permet d'empêcher les fortes variations de débit; les retenues et écrous actuels sont aisément franchissables par les poissons. La qualité des eaux et des sols ne perturbe aucunement le développement de biocénoses stables. La forêt alluviale, les eaux s'écoulant sur une faible hauteur et la végétation broussailleuse jouent un rôle important dans le cadre d'un paysage naturel qui se développe spontanément sous ces conditions. Le paysage naturel est dynamique et admet des processus d'érosion, de sédimentation et de succession. Les eaux s'écoulant à faible hauteur dans le lit mineur et dans les ruisseaux latéraux tiennent une place importante dans la chaîne alimentaire en raison de l'importante biomasse qu'elles recèlent. Des zones humides à rosellière longent le fleuve et sont indissociables du paysage fluvial, les sites les plus prometteurs étant cependant les anciennes cuvettes d'inondation situées derrière les digues. A proximité de l'embouchure du fleuve dans la mer, l'influence des marées et de l'eau salée se fait progressivement sentir. On trouve alors dans l'espace influencé par les marées des zones d'eau douce, saumâtre et salée sous forme de surfaces herbeuses d'alluvionnement, de sols de vase et de bancs de sable.

Par rapport à cet état-objectif naturel, on constate aujourd'hui l'absence particulière de biotopes tels que les forêts alluviales, les rives naturelles, les eaux s'écoulant à faible hauteur et les zones de marées. Cela se confirme par la faible présence d'espèces telles que le souche brun, le peuplier noir, le milan noir, le barbeau et la loutre. Les très faibles populations de saumons
et d’alooses feintes montrent également que les dispositifs de franchissement ne fonctionnent pas encore de façon optimale.

Les paragraphes ci-dessous exposent les objectifs du programme ‘Nature’ et les conditions qui s’imposent à la protection contre les inondations et à la navigation, dans la mesure où elles ont un impact sur la protection de la nature.

□ Nature

L’objectif du programme ‘Nature’ est de mettre en œuvre aux Pays-Bas la ’Structure Ecologique Principale’ (SEP). La ’Structure Ecologique Principale’ est un réseau fonctionnel de zones naturelles composé de zones centrales et de structures de connexion. Les fleuves et le lit majeur représentent une part importante de cette SEP. Des types d’objectifs naturels, qui représentent des habitats pour des espèces indicatrices données, ont été fixés pour chaque région physiographique de la SEP. Les types d’objectifs naturels dans le bassin fluvial concernent en particulier les paysages dits alluviaux, qui, avec une intervention minimale de l’homme, sont susceptibles de s’étendre sur de grandes superficies de plus de mille hectares. Il a été défini par ailleurs des types d’objectifs naturels de moindre superficie, qui ne peuvent être conservés que s’ils sont soumis à une gestion appropriée, p.ex. les prairies alluviales.

Les paysages alluviaux se composent d’une ensemble diversifié de biotopes tels que forêts alluviales, broussailles, levées naturelles et dunes intérieures, qui se sont développées spontanément sous l’effet de la dynamique fluviale naturelle. Ces processus dynamiques et cette diversité dans le lit majeur ont fortement diminué avec la construction de digues d’été et l’impact de la sédimentation dans les zones alluviales. Pour rétablir cette diversité, il ne suffit pas toujours de protéger et de conserver le lit majeur et d’adapter des directives administratives. Il est dans de nombreux cas nécessaire de procéder à un travail de restauration pour rétablir les conditions naturelles générales requises. On peut p.ex. reconstituer le relief initial, et rendre ainsi une partie de son autonomie au fleuve, en éliminant la couche argileuse derrière les digues d’été.

□ Sécurité

On s’efforce depuis des siècles de contenir les inondations en construisant des digues et des murs de protection. Avec le temps, ces digues et ces murs ont été constamment élargis et rehaussés. Comme le niveau des eaux retenues par les digues en cas de crue est en augmentation croissante et comme les surfaces derrière les digues sont soumises à des usages toujours plus intensifs, les dommages consécutifs à une rupture de digues sont de plus en plus importants.

Le débit dit "théorique", jusqu’au niveau duquel une protection doit être assurée, est calculé sur la base de niveaux d’eau et de débits mesurés par le passé. Après le passage des crues de 1993 et de 1995, les nouveaux débits théoriques calculés remplaceront les débits théoriques
actuels. On estime que les modifications climatiques pourront entraîner à l'avenir une augmenta
tion des débits théoriques et, en conséquence de la montée du niveau de la mer, provoquer un effet de retenue des eaux dans les zones d'embouchure. Il n'est donc pas conseillé de limiter la protection contre les inondations à des mesures renforcées de consolidation des digues et des murs de protection.

La directive administrative "Espace pour le fleuve" se donne pour objectif de garantir la capacité d'emmagasinement et d'écoulement des grands fleuves, de protéger les populations et les animaux contre les inondations et de limiter les dommages matériels qui en résultent. Pour y parvenir, il convient de préserver l'espace actuel du lit majeur et de conquérir de nouvelles surfaces en décaissant ou aménageant le lit majeur. On distingue trois fonctions liées au fleuve : sécurité, navigation, nature. La sécurité est prioritaire. Les fonctions qui ne sont pas liées au fleuve doivent être écartées du lit majeur et les interventions sur les fonctions liées au fleuve ne doivent pas provoquer une augmentation du niveau des eaux.

Des études ont montré que l'évolution spontanée qui fait suite à un décaissement du lit ma
deur et la mise en place de ruisseaux latéraux permettent à terme l'implantation de grandes surfaces de forêts alluviales dans le lit majeur. Un développement forestier à grande échelle peut occasionner un effet prononcé de retenue des hautes eaux. Pour des raisons de protection contre les inondations, la représentation de l'état-objectif du milieu naturel prévoit une certaine forme d'entretien, comme p.ex. le pâturage, pour mettre un frein au développement des forêts. Toutefois, le développement de la nature peut également contribuer à améliorer la protection contre les inondations. Ainsi, le décaissement du lit majeur constitue une mesure permettant de restaurer le relief initial et d'augmenter l'influence du fleuve. Cette mesure ne contribue pas uniquement à la restauration d'éléments écologiques précieux, mais fait également augmenter la capacité d'emmagasinement et d'écoulement du fleuve, ce qui se répercute positivement sur la fonction de sécurité.

Au cours des prochaines années, un faisceau de mesures sera élaboré dans le but de conser
ver, dans les embranchements du Rhin, un niveau de protection durable contre les inonda
tions. Différentes mesures vont être comparées, comme p.ex. le décaissement et l'extension du
lit majeur ou du lit mineur, la construction de bassins de rétention, la réduction des pointes de débit de cours d'eau régionaux. Si elles sont mises en œuvre avec soin, la plupart de ces
mesures devraient favoriser la reconstitution de biotopes fluviaux caractéristiques.

□ Navigation

L'axe principal de transport doit être aménagé pour être en mesure d'autoriser le passage de
convois poussés à 6 barges et de convois poussés à 2 barges sur la Meuse navigable. La ma
nière dont les deux tronçons fluviaux vont être améliorés n'est pas encore définitivement fixée.
Les conditions de navigation vont également être améliorées dans plusieurs cours d'eau régio
naux. Après mise en œuvre de ces mesures d'amélioration du chenal de navigation, la capaci
té de ce dernier devrait suffire à faire face à l'augmentation prévue du fret fluvial.

Le lit mineur du fleuve est et reste donc utilisable en tant que voie de navigation intensive. Le
chenal principal de navigation sera artificiellement maintenu à la profondeur requise au
moyen d'épis et de retenues. Les eaux s'écoulant sur faible hauteur sont ainsi devenues rares
alors qu'elles constituent un biotope important dans la chaîne alimentaire du fleuve. En égard
au poids économique majeur des intérêts liés à la navigation, la restauration de bas fonds
dans le chenal principal de navigation semble quasi impossible. À titre de compensation, on
peut envisager ce qu'on appelle des rigoles latérales creusées dans le lit majeur et faisant
fonction de pontage.
4.5.3 Principales mesures de restauration écologique

Globalement, la 'Structure Ecologique Principale' (SEP) couvrira un réseau fonctionnel d’env. 700.000 hectares au total, dont une partie importante dans les bassins des grands fleuves. La nature se rétablira en de nombreux endroits, grâce au raccordement de zones de développement naturel, en plus des zones naturelles déjà existantes.

□ Acquisition et développement

□ Gestion

Les zones acquises et celles à mettre en valeur sont gérées par des institutions spécialisées de protection de la nature (Staatsbosbeheer, Vereinigung Natuurmonumenten) ou par une des Provinciale Landschappen, c'est-à-dire l’une des trois formes reconnues de gestion territoriale. Dans quelques cas, la gestion est dans les mains de personnes privées se fixant des objectifs de protection de la nature et du paysage conformes aux statuts définis. Dans plusieurs autres cas, la gestion est placée sous la responsabilité de l’administration des eaux fluviales.

□ Protection

L’acquisition, la mise en valeur et la gestion de ces zones par des institutions reconnues représentent un outil majeur de protection. Tant que les zones naturelles concernées n’ont pas été acquises ou que les accords de gestion les concernant n’ont pas été passés, ces zones ne jouis-sent d’aucune protection. Leur acquisition et les accords de gestion se font sur une base volontaire et ne peuvent être imposés.

La protection de la SEP est la dernière étape; elle consiste à:

* fixer la fonction naturelle en la planifiant
* appliquer le principe de compensation de la SEP
* classer les zones dans le cadre de la loi sur la protection de la nature
* classer les zones dans le cadre des conventions internationales de protection de la nature
Loi sur la protection de la nature

La loi sur la protection de la nature s’applique à un nombre limité de zones comprises dans le bassin des grands fleuves; ces zones jouissent alors d’une protection légale. Cette classification juridique a pour but de préserver les caractéristiques (soit disant) essentielles des zones concernées. Ces caractéristiques sont généralement des éléments faunistiques et floristiques précieux; ils peuvent cependant englober également toute la zone en tant qu’unité paysagère. Toute intervention ayant des effets sur la zone ou susceptible de les provoquer est soumise à autorisation.

Contexte international

Les Pays-Bas ont signé les accords suivants:

- Directive ‘Oiseaux’ de 1997; objectif: protection de toutes les espèces sauvages d’oiseaux en Europe
- Directive ‘Habitats’ de 1992; objectif: protection de la flore, de la faune et des habitats
- Convention sur les zones humides (Ramsar) de 1971; objectif: préservation des zones humides et des oiseaux qui y vivent
- Création de réserves naturelles.

Mesures de protection contre les inondations

Des mesures de grande ampleur vont devoir être prises dans le courant des prochaines années pour assurer la protection des personnes et des biens contre les inondations dans le delta du Rhin. Certaines de ces mesures sont également susceptibles de renforcer la qualité du milieu naturel. L’impact de différents types et combinaisons de mesures a été analysé. Cette analyse ne s’est pas limitée à l’impact en terme de sécurité, mais a également pris en compte d’autres aspects tels que les répercussions sur le milieu naturel. Il est prévu de se fonder sur ces enseignements pour déterminer pour chaque tronçon le groupe de mesures le plus adéquat et répondant le mieux aux exigences de sécurité depuis Lobith jusqu’à la mer. Ce groupe de mesures se compose en règle générale d’une combinaison de plusieurs types de mesures.

Impact écologique de chaque mesure

Le tableau 1 rassemble les mesures de protection contre les inondations. L’impact potentiel de chaque type de mesure sur le milieu naturel a été estimé. Pour déterminer cet impact, on a examiné dans quelle ordre de grandeur les mesures étaient potentiellement susceptibles de contribuer à la réalisation de l’état-objectif pour le milieu naturel fluvial.

La plupart des mesures de protection contre les inondations se prêtent à la restauration ou au développement des valeurs naturelles (tableau 1) subordonnées aux objectifs visés. Elles peuvent notamment profiter au développement naturel du lit majeur du fleuve. Ainsi, des mesures prévoyant un élargissement du lit majeur ou la mise en place de bassins de rétention peuvent permettre d’agrandir l’espace soumis à la dynamique du fleuve. L’évolution favorable de telles zones peut donner naissance à des biotopes fluviaux caractéristiques. Ces mesures profitent également aux biotopes situés en bordure du lit majeur, en position relativement plus haute, plus sèche et moins soumise à la dynamique fluviale, p.ex. les forêts alluviales à bois durs. En décaissant le lit majeur et en aménageant le lit mineur, on peut améliorer la
qualité écologique des biotopes fluviaux et augmenter par là même le nombre de ces biotopes caractéristiques. Les mesures pour la "réduction de la résistance" peuvent également y contribuer, mais cela dépend en grande partie de la mise en valeur des zones et de leur gestion. Ainsi, la diversité de biotopes naturels peut sensiblement augmenter par le biais de mesures de décaissement du lit majeur si le relief initial est rétabli. Si en revanche le décaissement est trop profond, on obtient un écoulement régulier et monotone des eaux.

☐ Possibilités de mise en réseau écologique

Le tableau suivant indique les possibilités de combinaison des différentes mesures. L’effet de l’ensemble des mesures peut, en outre, renforcer la structure du réseau écologique.

Les mesures de protection doivent être appliquées à l’ensemble des bassins des grands fleuves et sur chaque tronçon. Si ces mesures contribuent pour une part importante au développement du milieu naturel, elles sont également susceptibles d’améliorer le réseau écologique d’une vaste région géographique. Ce contexte offre en outre des possibilités de connexion des grands fleuves avec des cours d’eau régionaux et les zones situées devant et derrière les digues. Du fait de leur grande diversité, les mesures contribuent à la formation d’un milieu naturel aux formes multiples. Ainsi, les biotopes plus secs et moins dynamiques situés dans le lit majeur tirent profit d’un élargissement du lit majeur, alors que le décaissement du lit majeur est particulièrement bénéfique aux habitats fluviaux humides et dynamiques.

Dans le cadre d’études écologiques, différents scénarios prévisionnels ont été élaborés aux Pays-Bas pour pronostiquer les évolutions écologiques. Il en ressort que les grandes unités de surfaces naturelles sont d’une importance primordiale pour la pérennité des populations. C’est un aspect à conserver à l’esprit dans le choix des zones auxquelles doivent être appliquées les mesures de protection.

Crues du Rhin en 1993 aux Pays-Bas.
Photo: KWS/DWW, Delft.
Tableau 1: synoptique des mesures de protection contre les inondations et relations avec (le développement de) la nature

<table>
<thead>
<tr>
<th>Mesures</th>
<th>Perspectives pour la nature</th>
<th>Points à surveiller:</th>
<th>Évaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grands fleuves:</td>
<td></td>
<td>La suppression de zones non inondées entraîne la perte d’espace de rétention des crues, celle des digues d’été entraîne la perte des valeurs écologiques que représentent les eaux calmes dans les anciens bras.</td>
<td>-/+</td>
</tr>
<tr>
<td>Réduction de la résistance</td>
<td>Restaurer le système naturel fluvial dans les cours d’eau latéraux, rétablir le régime de submersion en supprimant les digues d’été et les zones actuellement non inondées.</td>
<td>Dessechement du lit majeur – rives encore plus escarpées</td>
<td>---</td>
</tr>
<tr>
<td>Approfondissement du lit d’étiage</td>
<td>Néant</td>
<td>Aux dépens de la surface de l’ancien lit majeur</td>
<td>+/+ +</td>
</tr>
<tr>
<td>Aménagement du lit d’étiage</td>
<td>Elargir la zone riveraine douce et la zone des eaux peu profondes.</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Décaissement du lit majeur</td>
<td>Rétablir l’ancien relief et modifier en conséquence la fréquence de submersion et la végétation. On peut également influencer la fréquence de submersion en maintenant ou supprimant les digues d’été.</td>
<td>Le décaissement se fait aux dépens d’écotopes fluviaux "plus secs" et entraîne la formation de milieux naturels "aquatiques". "idée d’un "fleuve naturel" part d’un décaissement moyen du lit majeur d’env. 1 m.</td>
<td>-/+</td>
</tr>
<tr>
<td>Elargissement du lit majeur</td>
<td>La taille du lit majeur augmente et améliore par là même les perspectives de développement d’un paysage fluvial naturel. Dans les zones où les digues ne sont pas immédiatement déplacées mais où des terrains en arrière des digues sont réservés pour l’avenir, il est peut-être possible de relier les espaces naturels situés en avant et en arrière de la digue.</td>
<td>Perte éventuelle de valeurs écologiques existantes, par exemple si un étaing situé derrière la digue se retrouve ensuite dans le lit majeur.</td>
<td>+/+</td>
</tr>
<tr>
<td>Bassin de rétention</td>
<td>En fonction du régime hydrologique qui s’installera, il sera peut-être possible de développer la nature dans les espaces de rétention.</td>
<td></td>
<td>0/+ +</td>
</tr>
<tr>
<td>Blocage des apports de débit latéral</td>
<td>Possibilité de développement de prairies humides à l’embouchure d’affluents ou d’autres cours d’eau.</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Rehaussement des digues</td>
<td>Plus d’espace pour la forêt alluviale dans le lit majeur.</td>
<td>Perte éventuelle de valeurs écologiques existantes sur la digue et aux abords de celle-ci.</td>
<td>+/-</td>
</tr>
</tbody>
</table>

1. Les niveaux d’évaluation vont de --- (très défavorable) à +++ (très bonnes perspectives). Pour un certain nombre de mesures, on indique une marge qui est fonction du type de mise en place ou de gestion d’une zone.
4.5.4 Description de tronçons fluviaux dans le delta du Rhin

Compte tenu du caractère hydrologique, de la morphologie et des objectifs qui s’en dégagent pour le milieu naturel, le bassin néerlandais des branches du Rhin est subdivisé en 4 sous-bassins:

- le Bovenrijn à partir de la frontière allemande, qui devient ensuite le Waal
- le Nederrijn-Lek, à partir d'Arnhem
- l'IJssel
- le delta d'eau douce

La description de chaque tronçon est présentée dans le détail sur la base d'un secteur-type pris comme exemple. Les secteurs-types ont été cartographiés dans l'atlas du Rhin.

<table>
<thead>
<tr>
<th>Tronçon</th>
<th>Aspects hydrologiques</th>
<th>Morphologie</th>
<th>Objectifs écologiques</th>
<th>Autres fonctions et usages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovenrijn/Waal</td>
<td>- écoulement libre</td>
<td>- endigué</td>
<td>- paysage fluvial dynamique</td>
<td>- navigation</td>
</tr>
<tr>
<td>exemple de zone: Millingerwaard</td>
<td>- crue théorique: 15.000 m³</td>
<td>- lit majeur peu élevé</td>
<td>1. rigoles latérales</td>
<td>- excavation</td>
</tr>
<tr>
<td></td>
<td>- 66% du débit total</td>
<td>- niveau du sol partiellement subsident</td>
<td>2. dunes intérieures</td>
<td>- agriculture</td>
</tr>
<tr>
<td></td>
<td>- très dynamique</td>
<td>- sédimentation avec matériaux contaminés</td>
<td>3. forêts alluviales à bois durs & tendres</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- fluctuation des niveaux d'eau de 9 m maximum</td>
<td></td>
<td>4. dépressions marécageuses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. prairies alluviales</td>
<td></td>
</tr>
<tr>
<td>IJssel</td>
<td>- écoulement libre</td>
<td>- endigué</td>
<td>- paysage fluvial peu dynamique</td>
<td>- trafic fluvial de faible intensité</td>
</tr>
<tr>
<td>exemple de zone: Dauersche Waarden</td>
<td>- crue théorique: 2.500 m³</td>
<td>- lit majeur aux zones élevées</td>
<td>1. rigoles</td>
<td>- navigation de plaisance</td>
</tr>
<tr>
<td></td>
<td>- 11% du débit total</td>
<td>- débouche sur le delta (de l'Ancienne Zuiderzee)</td>
<td>2. dunes intérieures</td>
<td>- agriculture</td>
</tr>
<tr>
<td></td>
<td>- moyennement dynamique</td>
<td></td>
<td>3. forêt alluviale à bois durs</td>
<td>- captage d'eau</td>
</tr>
<tr>
<td></td>
<td>- fluctuation du niveau des eaux de 5 m maximum</td>
<td></td>
<td>4. prairies alluviales</td>
<td>- villes hanséatiques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- paysage naturel & culture de grande valeur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- entrée d'eau via canaux latéraux</td>
</tr>
<tr>
<td>Nederrijn-Lek</td>
<td>- régulé (3 barrages)</td>
<td>- endigué</td>
<td>- paysage fluvial peu dynamique</td>
<td>- trafic fluvial de faible intensité</td>
</tr>
<tr>
<td>exemple de zone: Blaune Kamer</td>
<td>- crue théorique: 5.000 m³</td>
<td>- lit majeur avec zones basses et se rétrécissant fortement en rejoignant le Lek</td>
<td>1. rigoles, mares</td>
<td>- navigation de plaisance</td>
</tr>
<tr>
<td></td>
<td>- 22% du débit total</td>
<td></td>
<td>2. zones de ried</td>
<td>- agriculture</td>
</tr>
<tr>
<td></td>
<td>- faiblement dynamique</td>
<td></td>
<td>3. végétation de graminées</td>
<td>- options pour usines hydroélectriques</td>
</tr>
<tr>
<td></td>
<td>- fluctuation du niveau des eaux de 6 m maximum</td>
<td></td>
<td></td>
<td>- passes à poissons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta d'eau douce</td>
<td>- influence des marées, très affablie</td>
<td>- endigué</td>
<td>- zone de marées peu dynamique</td>
<td>- captage d'eau potable</td>
</tr>
<tr>
<td>exemple de zone: Noordwaard</td>
<td>- Haringvliet endigué</td>
<td>- polders en zones basses et endigués (situés pour la pluspart derrière les digues)</td>
<td>1. zone de ried</td>
<td>- loisirs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- réduction notable de la zone des marées par endiguement</td>
<td>2. lit majeur herbeux et sole vaseux</td>
<td>- excavation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- bassins de sédimentation</td>
<td>3. saulaies</td>
<td>- agriculture</td>
</tr>
</tbody>
</table>
Les problèmes et les potentialités sont exposés pour chaque tronçon à l'aide des exemples de zones sélectionnées. En règle générale, les informations se réfèrent:

- aux possibilités de réalisation des objectifs écologiques (acquisition et aménagement)
- aux contraintes potamologiques / à la protection contre les inondations
- au couplage d'autres fonctions: excavation et ressources en eau

Bovenrijn-Waal: Millingerwaard

Breve description
La Millingerwaard se situe en face de Lobith, sur la rive droite du Bovenrijn-Waal. Cette zone du lit majeur s'étend sur env. 250 hectares et peut être grossièrement subdivisée en une partie très dynamique et une autre peu dynamique. De tous temps, des limons ont été exploités dans ce lit majeur en combinaison avec des usages agricoles. Jusqu'à la fin des années 80, la pratique courante consistait à réaménager les sols excavés pour les rendre cultivables. Quelques anciennes carrières de briqueteries ont été conservées. Elles sont à l'origine du développement du milieu naturel dans la Millingerwaard.

Les éléments caractéristiques de la partie très dynamique sont les dunes intérieures (les plus importantes des Pays-Bas) et la végétation pionnière qui les colonise. Quand le niveau des eaux est élevé, de grandes quantités d'eau s'écoulent dans le lit majeur (avec des différences de niveau allant jusqu'à 9 mètres) et donnent lieu à des processus morphologiques de grande ampleur. Il n'est pas rare de constater après le passage d'une crue un apport alluvionnaire de 1 à 1,5 m de sable.

La partie peu dynamique se compose d'une multitude d'anciens bras et d'argillières protégées du fleuve et de son impact jusqu'à un niveau d'eau donné par une digue d'été. Cette partie se compose de prairies alluviales, de formations palustres et de broussailles.

Fonctions
Les principaux usages pratiqués dans la Millingerwaard sont l'agriculture, l'extraction de sable et d'argile et les loisirs. Un site industriel se trouve dans le lit majeur, avec passerelle de débarquement et hangars. La Millingerwaard est une zone de loisirs et de détente importante.

Développement potentiel
Schématiquement, l'objectif écologique visé pour la Millingerwaard se compose de trois éléments:

1. Préserver les cours d'eau peu dynamiques isolés
2. Construire des rigoles pour l'entrée des eaux
3. Optimiser le développement des dunes intérieures.

ad 1: pas d'explications plus détaillées

ad 2: un système de rigoles avec prise d'eau à l'aval dans le lit majeur va être mis en place au moyen d'excavations. Grâce à la différence de niveau avec le fleuve, les eaux d'infiltration s'écoulent vers les rigoles. La qualité des eaux transitant de cette manière est ainsi meilleure que celle du fleuve. En cas de crue extrême, le lit majeur dans son ensemble contribue à l'écoulement des eaux.
ad 3: les dunes intérieures de la Millingerwaard s'étendent dans une zone très propice à ce genre de formation naturelle, en raison de la direction particulière des vents dominants et de son emplacement dans la courbe intérieure d'un méandre. Le sable provenant du fleuve peut ainsi s'éllever en tourbillons et être transporté sur quelques kilomètres. Ces conditions sont rares aux Pays-Bas. Mais la position du terrain de l'usine implantée sur la dune intérieure et le fait que l'embarcadère coupe la dune en deux perturbent le développement naturel de celle-ci.

☐ IJssel: Duursche Waarden

Brève description

Les Duursche Waarden sont des éléments d'un banc de sable séparé de l'IJssel sur la rive intérieure. La zone est localisée sur la rive droite de l'IJssel entre Olst et Wijhe. Sa superficie est de 120 ha. Par le passé, elle était déjà dans sa quasi totalité la propriété de la Staatsbosbeheer (service public de gestion des forêts) et son bassin recevait des prairies alluviales de grande valeur. En outre, le rôle des genêts (*Crēx crex*), espèce rare, utilisait cette zone comme lieu de nidification. Aux Pays-Bas, les Duursche Waarden ont été le premier projet de grande superficie dans la région des grands fleuves à être choisi pour le développement d'espaces naturels.

Fonctions

Depuis le début des années 90, cette zone est considérée digne de protection. Dans une mesure limitée, elle est accessible aux visiteurs et aménagée pour les activités de détente (chemins de randonnée et observatoires ornithologiques). Une exploitation agricole réduite existe encore aux abords de la zone. Pour toute intervention visant à développer le milieu naturel il a été décidé, entre autres mesures, de ne pas modifier la situation potamologique actuelle.

Développement potentiel

L’objectif écologique pour les Duursche Waarden visait à renforcer les éléments d'intérêt écologique dans la zone. A cette fin, quatre éléments importants ont pu être distingués pour un système fluvial naturel:

1. Forêt alluviale;
2. Végétation rase et naturelle de graminées et de plantes herbacées
3. Marais
4. Cours d'eau naturels.

ad 1: on s'attendait à ce que se développe naturellement, sans aucune forme de gestion particulière, une forêt alluviale étendue, ce qui n'était pas souhaité en regard des conditions potamologiques en présence. En instaurant un pâturage extensif, on a pu freiner ce processus de développement. Pour permettre cependant l'établissement d'une forêt alluviale locale, qui est un élément caractéristique du paysage fluvial, des zones peu ou non pâturées, par exemple des îles, ont été aménagées. On a ainsi pu éviter d'avoir à installer et entretenir des clôtures.
Inventaire des zones d'intérêt écologique sur le Rhin et première étape pour une mise en réseau de biotopes

ad 2: la forme de gestion pour le développement et la conservation de cet élément du milieu naturel est celle d'un pâturage extensif. Le pâturage est effectué par des bovins des highlands écossais et des chevaux islandais, ces deux races ayant été retenues en raison de leur comportement différent dans le mode de pâturage.

ad 3: pas d'explications plus détaillées

ad 4: deux options ont été mises en œuvre lors de l'aménagement de cet élément: une rigole directement reliée au fleuve et une autre rigole isolée quand le débit est normal. Grâce à cette diversité des habitats aquatiques, différentes biocénoses fluviales peuvent se développer.

□ Nederrijn-Lek: De Blauwe Kamer

Brève description
"De Blauwe Kamer" se trouve dans le lit majeur sur la rive droite du Nederrijn à hauteur de Rhenen. Cette zone est depuis 1984 propriété de la fondation "Het Utrechts Landschap". La digue d'été existante a longtemps limité l'influence du fleuve aux débits de grande ampleur. On trouve dans le lit majeur plusieurs excavations, mares et anciens bras. C'est surtout dans les cours d'eau isolés qu'une végétation de plantes aquatiques était bien développée.

Fonctions
La zone était soumise à une exploitation agricole avant 1984 et a aussi fait l'objet de nombreuses excavations (extraction de sable et d'argile). Une briquetterie s'y trouve encore. Depuis 1984, les principales fonctions sont celles d'un paysage naturel de détente et de repos.

Développement potentiel
Les actions de développement écologique mises en œuvre ont visé à reconstituer un paysage fluvial plus proche de l'état naturel. À cette fin, une distinction a été faite entre différents éléments:

1. Forêt alluviale
2. Marais
3. Végétation rase et naturelle de graminées et de plantes herbacées
4. Cours d'eau naturels

Sur de grandes parties de la zone, les mesures ont eu pour effet d'augmenter la fréquence et de prolonger la durée d'inondation par le fleuve. Une gestion de pâturage extensif a créé les conditions requises pour le développement d'un paysage fluvial diversifié.

ad 1: l'extension de la forêt alluviale à bois tendres fait augmenter la résistance à l'écoulement des hautes eaux. Dans le cadre de la protection contre les inondations, une partie du lit majeur a été décaissée pour compenser l'impact du développement forestier.

ad 2: pas d'explications plus détaillées

ad 3: pas d'explications plus détaillées

ad 4: pour renforcer l'influence du fleuve, une rigole a été creusée pour raccorder au fleuve une partie des cours d'eau du lit majeur. À cette fin, la digue d'été a également été percée.
Inventaire des zones d'intérêt écologique sur le Rhin et première étape pour une mise en réseau de biotopes

Δ Delta d'eau douce: De Noordwaard

Brève description
La zone de développement écologique "De Noordwaard", située sur la rive sud de la Nieuwe Merwede, en aval de Dordrecht, englobe trois polders et s'étend sur une superficie d'env. 600 ha. Du fait de son emplacement sur la Nieuwe Merwede, elle pourra, à l'avenir, être un lien entre les réserves naturelles de Brabanter Biesbosch et de Sliedrechtse Biesbosch, et donner naissance à un grand réseau d'eau douce soumis à l'influence des marées. La zone va également être intégrée dans le parc national de Biesbosch. La Staatsbosbeheer assumera la gestion de la nouvelle réserve naturelle De Noordwaard.

Fonctions
La zone est soumise à une exploitation agricole. L'achat et l'aménagement de la zone ont été accélérés par des travaux d'excavation réalisés pour consolider les digues dans les polders. La future zone naturelle aura pour principale fonction celle de préserver la nature. Quelques types d'activités de loisirs respectueuses de l'environnement seront autorisées en bordure de cette zone.

Développement potentiel
Les orientations fixées dans l'objectif de développement prévoient l'extension de la zone intertidale de l'espace d'eau douce soumis à l'influence des marées. Ainsi, une implantation modérée de bosquets riverains et un usage optimal de la dynamique des marées sont prévus. En outre, il convient de tenir compte d'une augmentation de la fluctuation des marées, conséquence de la future gestion modifiée des écluses d'Haringvliet sur la mer du Nord. Les éléments suivants ont été intégrés dans l'objectif écologique défini pour la zone d'eau douce soumise à l'influence des marées.

1. Zones d'eau profondes et peu profondes
2. Marais
3. Sols limoneux
4. Forêt (alluviale).

En bref: on envisage de développer dans cette zone l'ensemble des gradients depuis les eaux profondes jusqu'aux sols surélevés des rives.

ad 1: un système de rigoles va être mis en place dans la zone et raccordé au fleuve à deux endroits. Cela permettra également d'établir des débits d'entrée dans les polders, avec des fluctuations (extrêmes) concomitantes aux fluctuations des marées. Le caractère de zone d'eau douce influencé par les marées en sera de cette manière renforcé.

ad 2, 3 et 4: pas d'explications plus détaillées
Annexe

Mesures prioritaires visant à atteindre les objectifs de développement déjà adoptées lors de la 11ème Conférence ministérielle sur le Rhin tenue le 8.12.94

- **Haut Rhin (de la sortie du Lac de Constance à Bâle)**
 - Prise en compte des principes écologiques dans les mesures d'aménagement hydraulique ayant un impact considérable, notamment les centrales implantées sur le haut Rhin en zone frontalière.
 - Réalisation par étapes dans les cantons riverains du Rhin de Bâle-Ville, Bâle-Campagne, Argovie, Zurich, Schaffhouse et Thurgovie des 12 projets suisses locaux de remise à l'état naturel sélectionnés dans le cadre de l'étude "Mesures d'amélioration écologique sur le haut Rhin"
 - Elaboration d'un plan transfrontalier de mise en réseau par les cantons riverains du Rhin de Bâle-Ville, Bâle-Campagne, Argovie, Zurich, Schaffhouse et Thurgovie ainsi que par le Land de Bade-Wurtemberg
 - Ouverture d'entretiens et de négociations bilatérales entre les autorités publiques de la Confédération suisse et du Land de Bade-Wurtemberg, en y associant les cantons et les Commissions administratives germano-suisses, et en prenant acte de la pétition du 7.12.94 sur les futures possibilités d'aménagement des centrales existant sur le haut Rhin dans le cadre du renouvellement des concessions ainsi que sur la protection optimale et la conservation des deux derniers tronçons importants d'eaux courantes disposant d'une pente naturelle:
 1. Tronçon entre Rheinau et en amont de l'embouchure de la Thur
 2. Tronçon entre la centrale de Reckingen et les Koblenzer Laufen

- **Rhin supérieur (de Bâle à Bingen)**
 - Mise en place de polders ou reculs de digues avec inondations écologiques - dans la mesure des possibilités hydrologiques et hydrauliques en présence - pour une meilleure protection contre les crues et dans le but de conserver et de régénérer les biotopes alluviaux typiques, compte tenu des mesures contractuelles convenues.

2 Pétition de 21 organisations de pêche et de protection de la nature suisses et allemandes en faveur d'une prochaine mise en œuvre du PROGRAMME D'ACTION "RHIN 2000" sur le haut Rhin
- Amélioration ou rétablissement d'anciennes connexions hydrauliques et biologiques entre le fleuve et ses zones alluviales (bras morts comme p.ex. bras mort de Baltzenheim, Altwasser de Daubensand, Hoodt de Gamsheim, bras mort de Beinheim, Fahrgiessen de Seltz, bras mort de Mothern, Roessmoerder à Ciffendorf) et/ou affluents.

- Protection de systèmes de biotopes typiques des zones alluviales et d'intérêt écologique, notamment en instaurant des réserves naturelles, ceci en concertation au niveau transfrontalier et en tenant compte des mesures contractuelles convenues.

- Mise en place de passerelles biologiques efficaces entre les biotopes d'intérêt écologique.

- **Rhin moyen** (de Bingen à Bonn)

 Sur le Rhin moyen, les possibilités de mise en œuvre de mesures d'amélioration écologique sont très limitées du fait de l'étroitesse de la vallée.

- **Rhin inférieur** (de Bonn à l'embouchure)

 - Sur la base du plan global pour le Rhin en Rhénanie-du-Nord-Westphalie, il convient d’améliorer les conditions écologiques sur le Rhin inférieur. Quelques mesures sont actuellement préparées et mises en œuvre, p.ex. le recul de la digue longeant la courbe du Rhin à hauteur d’Orsoy (PK 799,6 à 805,0), ce qui permettra de rendre au fleuve env. 220 ha de champ inondable. D’autres mesures sont en phase concrète de planification et seront réalisées à court et moyen terme de sorte qu’env. 1500 ha pourront être disponibles comme surfaces supplémentaires de rétention des crues et contribueront à améliorer l’écosystème.

 - Mesures visant à réduire le processus d’érosion du fond

 - Sur le Rhin inférieur en Rhénanie-du-Nord-Westphalie, les zones alluviales d’intérêt écologique s’étendent sur env. 20.000 ha répartis sur les circonscriptions de Clèves et de Wesel. Env. 11.000 ha jouissent déjà d’un statut de protection, env. 4.500 ha doivent venir s’y ajouter dans le courant des prochaines années. Il est prévu de laisser se développer 5.000 ha supplémentaires de zones proches de l’état naturel.

 - Dans la partie aval du Rhin inférieur aux Pays-Bas, les zones d’intérêt écologique s’étendent sur env. 7.500 ha. Env. 3.000 ha sont déjà protégés. Les estimations basées sur les programmes politiques de protection de la nature et de gestion des eaux mettent en évidence que dans le courant des 25 années à venir 4.500 ha viendront s’y ajouter, de plus, 5.000 ha supplémentaires de zones en avant des digues et 3.000 ha le long des rives vont être mis en valeur, de sorte qu’env. 40% de la surface totale du corridor seront proches de l’état naturel. Il s’agit ici notamment de mesures visant à renforcer la dynamique des eaux courantes, de creusement des zones en avant des digues, de la mise en place de chenaux annexes et de l’ouverture de digues d’été. Les actions pouvant être réalisées sur une période de 5 ans seront mises en œuvre d’ici l’an 2000.
Toutes les zones de rives des bras du Rhin doivent, dans la mesure du possible, être proches de l'état naturel et servir de zones de raccordement.

Mesures générales supplémentaires

- Construction de dispositifs de franchissement ou de chenaux de dérivation fonctionnels sur les barrages et seuils dans la mesure où ceci est nécessaire pour la remontée et la descente des poissons.
- Destruction des barrages ou seuils devenus inutiles.
- Chaque projet de rénovation ou d'équipement de barrage pour l'hydroélectricité doit être conçu en tenant compte des incidences sur l'habitat et sur la migration des poissons en amont et en aval.
- Maintien en leur état des tronçons résiduels d'eaux courantes.
- Diversification structurelle du lit (dépressions, rapides, bancs de gravier, berges plates et graveleuses, abris).
- La dynamique du lit doit pouvoir mieux s'exprimer et il convient de laisser se constituer certains dépôts de gravier.
- Alimentation suffisante des cours d'eau dans la zone des tronçons court-circuités avec la fixation d'un débit minimal suffisant compte tenu des conventions bilatérales.
- Ombragement partiel de petits cours d'eau.
- Protection et conservation, restauration ou création en d'autres endroits de biotopes piscicoles importants.
- Mise en œuvre de marquages de poissons dans le cadre des mesures d'alevinage.
- Installation de dispositifs de contrôle de la migration piscicole installés sur le Rhin ainsi que sur les principaux affluents.
- Introduction de prescriptions renforcées relatives à la protection des espèces et à la pêche pour les espèces piscicoles menacées dans le Rhin et ses affluents et ciblées par le "Programme visant au retour des grands migrateurs dans le Rhin (Saumon 2000)".
- Relation étroite entre les réglementations de pêche en vigueur pour la mer du Nord et l'Atlantique et les programmes en cours relatifs à la protection du saumon atlantique dans l'hydrosystème du Rhin.
- Études relatives à la réimplantation de l'esturgeon (*Acipenser sturio*).