Teneurs de polluants dans les matières en suspension
de l'onde de crue du Rhin d’avril 1994

- Résumé -
<table>
<thead>
<tr>
<th>Sommaire</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Objet</td>
<td>5</td>
</tr>
<tr>
<td>2. Régime hydrologique</td>
<td>5</td>
</tr>
<tr>
<td>3. Indicateurs</td>
<td>9</td>
</tr>
<tr>
<td>4. Paramètres inorganiques</td>
<td>13</td>
</tr>
<tr>
<td>4.1 Débit et matières en suspension</td>
<td>14</td>
</tr>
<tr>
<td>4.2 COT et P total</td>
<td>16</td>
</tr>
<tr>
<td>4.3 Zinc, plomb et manganèse</td>
<td>18</td>
</tr>
<tr>
<td>4.4 Nickel, chrome et fer</td>
<td>20</td>
</tr>
<tr>
<td>4.5 Cuivre et arsenic</td>
<td>22</td>
</tr>
<tr>
<td>4.6 Mercure et cadmium</td>
<td>24</td>
</tr>
<tr>
<td>5. Paramètres organiques</td>
<td>27</td>
</tr>
<tr>
<td>5.1 HCB</td>
<td>28</td>
</tr>
<tr>
<td>5.2 PCB 28, PCB 52, PCB 101</td>
<td>30</td>
</tr>
<tr>
<td>5.3 PCB 138, PCB 153, PCB 180</td>
<td>32</td>
</tr>
<tr>
<td>5.4 Benzo(b)fluoranthène</td>
<td>34</td>
</tr>
<tr>
<td>5.5 Comparaison entre les concentrations et les flux</td>
<td>37</td>
</tr>
<tr>
<td>6. Synthèse</td>
<td>42</td>
</tr>
<tr>
<td>7. Annexes</td>
<td>44</td>
</tr>
<tr>
<td>7.1 Teneurs en métaux lourds dans le Rhin à hauteur de Coblenz</td>
<td>45</td>
</tr>
<tr>
<td>7.2 Teneurs en métaux lourds dans le Rhin à hauteur de Bad Honnef</td>
<td>46</td>
</tr>
<tr>
<td>7.3 Teneurs en métaux lourds dans le Rhin à hauteur de Kleve-Birkenen</td>
<td>47</td>
</tr>
<tr>
<td>7.4 Teneurs en métaux lourds dans le Rhin à hauteur de Lobith</td>
<td>48</td>
</tr>
</tbody>
</table>
7.5 Teneurs en substances nuisibles organiques dans le Rhin à hauteur de Coblence

7.6 Teneurs en substances nuisibles organiques dans le Rhin à hauteur de Bad Honnef

7.7 Teneurs en substances nuisibles organiques dans le Rhin à hauteur de Kleve-Bimmen

7.8 Teneurs en substances nuisibles dans le Rhin à hauteur de Lobith
1. **Objet**

L'une des tâches du cercle d'experts "Monitoring" de la CIPR dans le cadre de la détermination des flux de polluants annuels consiste à estimer également la part que peuvent tenir les ondes de crue. Cette part qui incombe à l'onde de crue prend de plus en plus d'importance depuis les dernières années, étant donné que les flux moyens de polluants ont sensiblement diminué au cours des 20 dernières années, entraînant par là même une augmentation éventuelle de la part due à une onde de crue.

Pour estimer les flux, il est tout d'abord nécessaire d'acquérir des connaissances sur l'évolution des teneurs de polluants dans les matières en suspension lors du passage d'une onde de crue. Les teneurs baissent-elles par "dilution" avec des matériaux érodés non pollués ou l'évolution est-elle différente?

Les membres du cercle d'experts ont chargé en 1993 les laboratoires participant au programme de mesures de prélever des échantillons par centrifugeuse en continu avec la fréquence la plus élevée possible sur la première onde de crue du Rhin en 1994. La "Bundesanstalt für Gewässerkunde" a signalé aux laboratoires la date à laquelle devaient commencer les prélèvements.
6. Synthèse

En avril 1994, une onde de crue principalement alimentée par des fleuves prenant naissance dans des massifs moyens a fait l'objet d'analyses détaillées; les exploitants des stations de mesures de Coblenze, Bad Honnef, Kleve-Bimmen et Lobith ont prélevé des échantillons une ou deux fois par jour.

Les résultats du programme de routine de mesure des matières en suspension ont été intégrés à l'évaluation, si bien qu'une onde de crue de moindre ampleur provenant presque exclusivement du Rhin supérieur a été recensée en mai par le biais d'un échantillon.

Pour le Rhin à hauteur de Coblenze, l'évolution des teneurs en calcium a illustré les différentes origines des débits. Par ailleurs, il s'est avéré que le barium pouvait éventuellement être considéré comme un élément guide supplémentaire.

L'onde de crue d'avril montre que l'évolution des teneurs des paramètres inorganiques n'est pas homogène:

Alors que l'on a pu constater pour le COT, le P total et le zinc une baisse significative des teneurs dans l'onde pour toutes les stations de mesures, la situation est plus hétérogène pour les autres paramètres:

- on constate à hauteur de Coblenze de fortes augmentations de la pollution spécifique des matières en suspension dans l'onde de crue d'avril, notamment pour le cadmium, mais aussi pour le nickel, le chrome, le cuivre et le fer;

- à Bad Honnef, la hausse constatée dans l'onde d'avril n'est plus significative que pour le nickel; cet effet disparaît totalement à hauteur de Kleve-Bimmen;

Dans l'onde de crue de moindre ampleur du mois de mai, les teneurs enregistrées pour les paramètres suivants

- P total, zinc, plomb, chrome, nickel, cuivre et cadmium

sont inférieures à celles de l'onde d'avril.

Il convient également de différencier l'évolution de la pollution des matières en suspension par les paramètres organiques pendant une onde de crue du Rhin. Pour les éléments-traces du groupe des PCB et des HPA, la pollution spécifique des matières en suspension ne se modifie guère au fur et à mesure qu'augmente la teneur en matières en suspension. Ceci entraîne un apport supplémentaire de PCB et d'HPA dû à la répartition ubiquistique de ces groupes de substances.

Pour l'HCB par contre, l'origine de l'onde de crue est déterminante. C'est ainsi qu'à Coblenze, Bad Honnef et Lobith, on observe pendant la petite onde de crue survenue en mai et provenant du Rhin supérieur une augmentation de la pollution spécifique des matières en suspension, contribuant ainsi sensiblement au flux. Les sédiments pollués du Rhin supérieur constituent la principale source de pollution des matières en suspension par l'HCB.

Pour les composés de dibutyléthaine et de tributyléthaine notamment, on constate à la station de mesure de Bimmen une forte diminution de la pollution spécifique des matières en suspension, phénomène dû à la dilution de matériaux érodés peu contaminés.
Conclusions:

L'origine des débits - massifs moyens ou Rhin supérieur - a une importance décisive sur l'évolution de la pollution des matières en suspension par les paramètres inorganiques dans le cadre d'une onde de crue.

La pollution par les métaux lourds, tout comme celle occasionnée par de nombreuses substances nuisibles organiques, est en général plus faible lorsque les crues viennent du Rhin supérieur que lorsqu'elles sont alimentées par des fleuves prenant naissance dans les massifs moyens.

Dans le cas de telles crues, il ne faut pas s'attendre, comme on pourrait le supposer, à ce que les teneurs baissent du fait de la dilution de matériaux érodés peu contaminés au fur et à mesure qu'augmentent les débit et les teneurs en matières en suspension, mais au contraire à ce qu'elles augmentent plus ou moins.

Dans le cas des éléments-traces organiques à répartition ubiquiste, la pollution des matières en suspension ne baisse guère au fur et à mesure qu'augmentent le débit et la teneur en matières en suspension, la dilution ne jouant ici pratiquement aucun rôle. Il en résulte un apport supplémentaire pendant l'onde de crue.

Pour ce qui est des éléments-traces provenant de sources ponctuelles, l'origine des débits est déterminante pour savoir si et comment se modifie la pollution spécifique des matières en suspension pendant une onde de crue.

De par principe, les substances qui sont essentiellement liées aux particules et pour lesquelles on souhaite établir des bilans de flux annuels, doivent faire l'objet de prélèvements plus fréquents en situation de crue que lorsque le régime hydrologique est "normal".