Le macrozoobenthos du Rhin 1990–1995
dans le cadre du programme «Saumon 2000»

INTERNATIONALE KOMMISSION ZUM SCHUTZE DES RHEINS
COMMISSION INTERNATIONALE POUR LA PROTECTION DU RHIN
Le macrozoobenthos du Rhin 1990–1995
dans le cadre du programme «Saumon 2000»

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préface</td>
<td>5</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>6</td>
</tr>
<tr>
<td>2 Réalisation des inventaires de macroinvertébrés</td>
<td>6</td>
</tr>
<tr>
<td>3 Méthode</td>
<td>8</td>
</tr>
<tr>
<td>4 Caractéristiques des tronçons du Rhin analysés</td>
<td>9</td>
</tr>
<tr>
<td>5 Distribution faunistique</td>
<td>11</td>
</tr>
<tr>
<td>□ Généralités</td>
<td>11</td>
</tr>
<tr>
<td>□ Haut Rhin</td>
<td>12</td>
</tr>
<tr>
<td>□ Partie méridionale du Rhin supérieur</td>
<td>13</td>
</tr>
<tr>
<td>□ Partie septentrionale du Rhin supérieur</td>
<td>15</td>
</tr>
<tr>
<td>□ Rhin moyen</td>
<td>16</td>
</tr>
<tr>
<td>□ Rhin inférieur</td>
<td>17</td>
</tr>
<tr>
<td>□ Rhin deltaïque</td>
<td>17</td>
</tr>
<tr>
<td>6 Evolution de la biocénose du Rhin</td>
<td>18</td>
</tr>
<tr>
<td>7 Mesures visant à améliorer la biocénose</td>
<td>23</td>
</tr>
<tr>
<td>□ Amélioration de la structure du biotope</td>
<td>23</td>
</tr>
<tr>
<td>□ Amélioration de la qualité de l’eau et des matières en suspension</td>
<td>24</td>
</tr>
<tr>
<td>□ Suivi des résultats</td>
<td>25</td>
</tr>
<tr>
<td>8 Résumé</td>
<td>26</td>
</tr>
</tbody>
</table>

Annexes | 29 |
Préface

L'objectif principal du Programme d'Action Rhin est de permettre à l'écosystème du Rhin de retrouver un état tel que des espèces supérieures jadis présentes mais aujourd'hui disparues (p.ex. le saumon) puissent se réimplanter dans le Rhin. Le programme présente une stratégie globale visant à améliorer durablement l'écosystème fluvial. Le saumon (*Salmo salar*), espèce jadis fréquente dans le Rhin et aujourd'hui éteinte, que la CIPR tend à réimplanter avec son programme « Saumon 2000 », est à la fois organisme indicateur et symbole. Le programme est financé par les États riverains et par l’UE.

Une bonne qualité des eaux et la revitalisation durable des habitats piscicoles et des zones alluviales sont les conditions essentielles de la réussite de « Saumon 2000 ». Le principal indicateur des résultats est le saumon lui-même, dont on a pu prouver le retour en 1995 jusqu'au barrage le plus en aval sur le Rhin supérieur. La diversité des espèces et la densité des peuplements d’invertébrés au fond du fleuve (macrozoobenthos) sont également des preuves, tout aussi importantes, des succès obtenus en matière de restauration écologique sur le Rhin. Ces microorganismes constituent un compartiment important dans la structure écologique de l’écosystème fluvial, soit en tant que consommateurs des matériaux organiques présents au fond du fleuve, soit en tant que proies pour les espèces supérieures telles que les poissons. Si ces organismes se propagent à nouveau, si leurs peuplements augmentent sensiblement, c’est la preuve que certaines conditions propices sont à nouveau rétablies dans leurs biotopes. Ces conditions sont également essentielles pour que fonctionne le cycle vital du saumon. Il s'agit p.ex. de la réduction des substances nuisibles dans les eaux, d’une alimentation suffisante en oxygène, de la diversité structurelle du lit du fleuve et d’un échange de substances suffisant au fond du fleuve. L’inventaire du macrozoobenthos, réalisé depuis 1990 à un rythme quinquennal, joue donc un rôle important dans le cadre du suivi des résultats du programme « Saumon 2000 ».

1 Introduction

Les objectifs poursuivis étaient

- de recenser systématiquement les macrozoaires du Rhin
- de décrire la biocénose sur le profil longitudinal et transversal
- de constater les modifications qualitatives et quantitatives survenues dans la zoocénose
- de souligner l’impact important des déficits structurels sur la biocénose dans les zones riveraines et au fond du fleuve et de soumettre des propositions d’amélioration des structures de l’espace vital.

2 Réalisation des inventaires de macroinvertebrés

Les études ont été réalisées par les services suivants:

<table>
<thead>
<tr>
<th>Suisse:</th>
<th>Office fédéral de l’environnement, des forêts et du paysage, Berne</th>
</tr>
</thead>
<tbody>
<tr>
<td>France:</td>
<td>Conseil Supérieur de la Pêche, Montigny-lès-Metz</td>
</tr>
<tr>
<td>Allemagne:</td>
<td></td>
</tr>
<tr>
<td>Bade-Wurtemberg:</td>
<td>Landesanstalt für Umweltschutz, Karlsruhe</td>
</tr>
<tr>
<td>Hesse:</td>
<td>Landesanstalt für Umwelt, Wiesbaden</td>
</tr>
<tr>
<td>Rhénanie-Palatinat:</td>
<td>Landesamt für Wasserwirtschaft, Mayence</td>
</tr>
<tr>
<td>Rhénanie-du-Nord-Westphalie:</td>
<td>Landesumweltamt, Essen</td>
</tr>
<tr>
<td>Pays-Bas:</td>
<td>RIZA, Lelystad</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>point km</th>
<th>secteurs analysés</th>
<th>point km</th>
<th>secteurs analysés</th>
<th>point km</th>
<th>secteurs analysés</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rhin supérieur</td>
<td></td>
<td>Rhin moyen</td>
<td></td>
<td>Rhin deltaïque</td>
</tr>
<tr>
<td>29.0</td>
<td>amont emb. Hemishofer B.</td>
<td>360.0</td>
<td>Lorch amont emb. Wisper</td>
<td>912.0</td>
<td>Rheinen</td>
</tr>
<tr>
<td>56.0</td>
<td>réteau Rheingau</td>
<td>361.5</td>
<td>Kaub</td>
<td>982.0</td>
<td>Lekkerkerk</td>
</tr>
<tr>
<td>63.8</td>
<td>amont emb. Thur</td>
<td>363.0</td>
<td>Oberwesel</td>
<td>951.0</td>
<td>Vuren (Woal)</td>
</tr>
<tr>
<td>70.6</td>
<td>amont emb. Töss, Tössegg</td>
<td>418.0</td>
<td>Lorch</td>
<td>885.0</td>
<td>Veip (Usel)</td>
</tr>
<tr>
<td>98.0</td>
<td>Rietheim, «Alt Rhi»</td>
<td>431.9</td>
<td></td>
<td>1000.0</td>
<td>Kampen (Ussel)</td>
</tr>
<tr>
<td>102.5</td>
<td>aval emb. Aare (Waldb.)</td>
<td>434.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125.9</td>
<td>amont emb. Sissle</td>
<td>435.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>157.0</td>
<td>amont sortie STEP Rhin (Prat.)</td>
<td>435.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168.0</td>
<td>Bâle</td>
<td>443.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170.0</td>
<td>Bâle</td>
<td>479.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171.5</td>
<td>Bâle</td>
<td>495.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rhin sup. méridional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.0</td>
<td>échelle à poissons Kembs</td>
<td>496.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174.5</td>
<td>Vieux-Rhin Markt</td>
<td>497.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178.5</td>
<td>amont écluse Kembs</td>
<td>504.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180.3</td>
<td>Vieux-Rhin Kembs</td>
<td>504.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199.0</td>
<td>Vieux-Rhin Neuenbourg</td>
<td>509.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>218.0</td>
<td>Vieux-Rhin Vieux-Brisach</td>
<td>510.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220.0</td>
<td>Vieux-Brisach</td>
<td>511.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>224.3</td>
<td>Vogelgrün, amont barrage</td>
<td>511.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>254.0</td>
<td>Vieux-Rhin, Rhaun</td>
<td>540.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>272.5</td>
<td>Vieux-Rhin, Orenheim</td>
<td>545.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>291.0</td>
<td>Vieux-Rhin, Marien</td>
<td>546.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>309.2</td>
<td>Gambach (canal) aval barrage</td>
<td>550.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>313.0</td>
<td>Graulbsbaun</td>
<td>555.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>316.0</td>
<td>Graulbsbaun</td>
<td>580.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>317.8</td>
<td>Graulbsbaun</td>
<td>582.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>354.0</td>
<td>Neuburg</td>
<td>590.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1 Secteurs analysés

Fig. 1 Prélèvement avec plongeur
3 Méthode

Pour analyser la qualité et la quantité de macrozoobenthos, les responsables ont utilisé différentes techniques en fonction des particularités des sites (figures 1 - 3):

- collecte directe de pierres ou kicksampling avec épuisette
- prélèvement réalisé par des plongeurs
- analyse faite à partir du bateau à l’aide d’un grappin-polype ou d’une drège
- utilisation de la cage et de la cloche à plongeur.

Fig. 2 le « Carl Straat », bateau équipé d’une cloche à plongeurs

Pour recenser le benthos représentatif, les échantillons de benthos ont été prélevés à chaque fois sur le type de substrat dominant. En complément, il a été fait appel aux résultats des analyses effectuées à l’entrée des eaux de refroidissement des grandes centrales hydroélectriques ainsi qu’aux inventaires dressés à l’aide de pièges optiques.

Fig. 3 grappin-polype
4 Caractéristiques des tronçons du Rhin analysés

Sur la base des conditions hydrologiques et géomorphologiques, le Rhin entre le lac de Constance et l'embouchure de la mer du Nord est subdivisé en plusieurs tronçons:

Le haut Rhin (lac de Constance - Bâle) était initialement caractérisé par une forte pente, peu d'éboulis, un fond rocheux, la présence de cascades et de rapides (chutes de Schaffhouse, rapides de Laufenbourg). Aux fins de production d'énergie hydraulique, on a construit depuis la fin du 19ème siècle 11 barrages qui ont sensiblement modifié le caractère du haut Rhin. Sur de longues distances, notamment entre l'Aare et Bâle, les ouvrages de régulation ont transformé le haut Rhin en un cours d'eau lent dans lequel se déposent des sédiments sablonneux et vaseux. Ce n'est qu'entre le lac de Constance et l'embouchure de la Thur ainsi qu'en amont de l'affluent de l'Aare que l'on trouve encore quelques tronçons rapides quasi naturels avec des mosaïques de substrat caillouteux diversifiées.

Au début du 19ème siècle, la partie méridionale du Rhin supérieur (Bâle - Karlsruhe) était encore un fleuve sauvage naturel, avec une zone alluviale pouvant atteindre une largeur de 6 km et de nombreux bras (zone de ramifications), qui modifiait son lit après chaque crue. A la suite de la correction du Rhin par Tulla (1817 – 1874), on a confiné le Rhin dans un lit étroit pour des raisons ayant trait à l'occupation des sols et l'aménagement du territoire. Ce phénomène a multiplié par vingt l'érosion du fond du fleuve, notamment en aval de Bâle, et fait descendre la nappe souterraine au-dessous de la zone radiculaire des arbres. Le Grand Canal d'Alsace (1927 – 1959), qui est parallèle au tronçon appelé Vieux-Rhin, a été construit entre Bâle et Vieux-Brisach afin qu'il soit possible de produire de l'énergie hydraulique et d'améliorer la navigation. Ce Vieux-Rhin, qui n'est pas navigable, est le dernier tronçon de fleuve aux eaux courantes sur la partie méridionale du Rhin supérieur. Pour soutenir le niveau de la nappe souterraine, on a renoncé à poursuivre la construction du canal parallèle entre Vieux-Brisach et Strasbourg; on a remplacé ce plan initial par l'aménagement dit en festons; cet aménagement est conçu de façon à ce que les festons du canal débouchent à nouveau dans l'ancien lit. Dans les autres tronçons du Vieux-Rhin, le niveau des eaux est soutenu par des seuils. En aval de Strasbourg, le Rhin est totalement canalisé jusqu'à Ifezeheim, dernier barrage sur le Rhin. Le fond du Rhin supérieur, dans sa partie méridionale, se compose de matériaux grossiers, et même de rochers à hauteur du seuil d'Istein (Vieux-Rhin). Des sédiments fins se déposent dans les retenues. Dans les tronçons du Vieux-Rhin,
les rives sont relativement naturelles alors que dans les autres secteurs elles sont consolidées par des enrochements et du béton.

Sur la **partie septentrionale du Rhin supérieur** (Karlsruhe – Bingen), la pente s’affaiblit. Initialement, le fleuve formait des méandres de 2 à 7 km en changeant fréquemment de lit, phénomène dû aux conditions morphologiques en présence. Depuis le siècle passé, le cours du Rhin a été fixé par la construction d’épis et sensiblement raccourci par la coupure de plusieurs méandres du Rhin. La partie septentrionale actuelle du Rhin supérieur est caractérisée par de nombreux vieux bras (en partie dégravoyés) qui ne sont que partiellement raccordés au Rhin et alimentés par ce dernier (lors de crues). Sur ce tronçon fluvial, les processus de sédimentation dominent du fait de la faible pente et entraînent la formation d’îles étirées.

Dès qu’il quitte le Rheingau pour entrer dans le Massif schisteux rhénan par le biais de la « Binger Pforte », le **Rhin moyen** (Bingen – Bonn) passe soudainement d’un fleuve de plaine au courant lent et accusant une part élevée de sédiments fins à un fleuve montagneux au courant rapide et au fond rocheux. Les interventions anthropogènes se limitent ici aux dynamitages de rochers et à la consolidation des rives par le biais d’enrochements.

Le **Rhin deltaïque** s’étend de la frontière germano-néerlandaise à l’embouchure de la mer du Nord. La zone d’embouchure était initialement caractérisée par un grand nombre de talwegs reliés les uns aux autres. La ligne côtière se composait de nombreuses îles. Afin de conquérir des terres sur la mer, on a commencé à partir du 8ème siècle à endiguer les îles, à assécher et dessaler les régions marécageuses et à ériger des digues intérieures et terminales (ces dernières avec des écluses, p.ex. à Haringvliet et Oosterschelde) en utilisant des techniques de plus en plus efficaces. Les rives du Rhin deltaïque sont consolidées par des épis et des enrochements, le fond du fleuve se compose de sable ou de limon.
5 Distribution faunistique

- Généralités

En 1995, les experts ont détecté sur l'ensemble du Rhin un total d’environ 225 espèces ou taxons supérieurs (sans compter les oligochètes et les chironomides) (cf. annexe 1). Les chiffres les plus élevés de taxons ont été constatés dans le haut Rhin et les plus faibles dans le Rhin inférieur (figure 4). Sur le profil longitudinal, on ne peut pas guère reconnaître de structure biocénétique naturelle (haut Rhin, partie méridionale du Rhin supérieur, Rhin deltique). Les différences constatées au niveau local sont généralement dues à différentes pollutions des eaux, à des structures morphologiques particulières ou à l'impact de certains affluents. La densité des individus varie sensiblement en fonction du tronçon du Rhin, de la localisation dans le profil transversal et de la saison et se situe entre 0 et plusieurs dizaines de milliers d'individus par m².

![Fig. 4](image)

Sur le profil transversal, la biocénose occupe essentiellement les grosses pierres stables présentes le long des rives sous forme d'éboulis (figure 5). Le nombre d'espèces et la densité des macroinvertébrés sessiles et semi-sessiles y sont dominants puisqu'ils y trouvent des substrats de colonisation appropriés. Par contre, seules quelques espèces colonisent le fond du fleuve. Les conditions sont extrêmement défavorables pour la plus grande partie des macrozoaires, le charriage plus important dans ce tronçon entraînant un bouleversement continu du fond du fleuve. Ces zones sont peuplées par des
espèces résistantes au charriage, en général des chironomides et des oligochètes, également capables de coloniser les couches plus profondes du fond du fleuve où le substrat n’est pas en mouvement. Le haut Rhin constitue une exception. Ici, sur de grands tronçons, de nombreuses espèces en forte densité colonisent le fond graveleux. Les zones dans lesquelles le charriage est relativement faible, p.ex. en amont des retenues, divergent également de la répartition typique du peuplement, présentée dans la figure 5.

![Graphique de la répartition du peuplement faunistique sur le profil transversal en 1995, PK 418](image)

La biocénose des différents tronçons du Rhin est décrite plus en détail dans les paragraphes suivants.

Haut Rhin

De tous les tronçons du Rhin, le haut Rhin est celui dont la diversité d’espèces est la plus grande (figure 4). Entre le lac de Constance et l’embouchure de l’Aare notamment, les plantes aquatiques offrent aux microorganismes des biotopes supplémentaires. On y trouve les éléments caractéristiques de la faune épipotamale absents ou rares dans les autres tronçons, par exemple le turbellarié Dugesia gonocephala, le microcrustacé Gammarus fossarum, les éphéméroptères Potamanthus riseus, Habroptilaoides confusa, Rhithrogena semicolorata, Ecdyonurus sp., ainsi que
plusieurs espèces du genre *Baetis*. On constate également la présence de plecoptères tels que *Perlodes sp.*, *Leuctra sp.*, *Nemoura sp.*, *Amphinemura sp.* et *Protonemura sp.*, de même que des trichoptères des genres *Sericostoma, Hydropsyche* et *Silo*. Ces taxons ont une prédilection pour les quelques tronçons qui offrent encore une grande diversité de courant et un substrat de gros graviers (p.ex. sortie du lac de Constance et partie amont de l’embouchure de l’Aare). En revanche, dans les zones fortement envasées que l’on trouve à proximité immédiate des barrages, les populations de tubificidés notamment peuvent atteindre une forte densité d’individus. En particulier sur les rives, de nombreux mollusques trouvent des conditions de vie idéales: un niveau d’eau constant, une vitesse de courant fortement réduite et un substrat végétal sur les rebords des rives.

Le gastéropode *Theodoxus fluviatilis* se distingue par un fort peuplement dans la zone de Bâle. Après avoir quasiement disparu dans le courant des années 70, cette espèce s’est reconstituée, parallèlement à l’amélioration de la qualité des eaux du Rhin, à partir d’une population rélictuelle subsistant dans la partie méridionale du Rhin supérieur. En aval de Rheinfelden, *Theodoxus* est aujourd’hui le gastéropode le plus fréquent, son extension vers l’amont se trouvant cependant ralentie ou handicapée par les barrages.

A hauteur de Hemishofen, le bivalve migrateur *Dreissena polymorpha*, que l’on détecte sur l’ensemble du Rhin, constitue sur de grandes surfaces de véritables bancs de coquillages dans le haut Rhin. Ce bivalve filtrant réduit la dérive des matériaux organiques provenant du lac de Constance. La densité de sa population baisse donc à mesure qu’augmente la distance qui le sépare du lac de Constance.

□ Partie méridionale du Rhin supérieur

La partie méridionale du Rhin supérieur se compose du Vieux-Rhin et du cours principal. Comparés au reste, le Vieux-Rhin et les festons du Vieux-Rhin sont bien colonisés (figure 4). Dans le tronçon amont, la biocénose est influencée par la proximité du haut Rhin. Ainsi, c’est à hauteur de Strasbourg environ qu’est atteinte la limite septentrionale de distribution de *Potamanthus fluviatilis*, un éphéméroptère typique du haut Rhin (figures 6 et 7). De même, l’aire de distribution de *Theodoxus fluviatilis* s’étend du haut Rhin jusqu’à Karlsruhe dans la partie méridionale du Rhin supérieur avec une tendance décroissante. Le tronçon du Rhin dans la zone du seuil d’Istein constitue un cas à part. Il est caractérisé par une barrière rocheuse dont la partie supérieure reste émergée la plus grande partie de l’année et n’est recouverte par les eaux que lors de crues de grande ampleur. La structure de la biocénose de ce tronçon est sensiblement différente de celle des autres tronçons du Rhin. Les ubiquistes tels que
Dreissena polymorpha ou le gastéropode Bithynia tentaculata régressent à l'avantage d'une entomofaune riche en individus et en espèces. Les éphéméroptères Ephemerella ignita et Baetis fuscatus notamment atteignent ici de fortes densités de populations. Des larves de l'odonate Calopteryx splendens vivent sur la renoncule flottante (Ranunculus fluitans). En aval de Vieux-Brisach, on trouve dans les zones graveleuses de plus en plus fréquemment deux types de bivalves du genre Corbicula et sur les pierres en éboulis le crustacé de vase Corophium curvispinum. Ces espèces sont néozoaires dans le Rhin (chap. 6).

Dans le Grand canal d'Alsace, parallèle au Vieux-Rhin, les espèces sont moins nombreuses que dans le Vieux-Rhin (figure 8) en raison de la structure morphologique et physiographique monotone en présence. On note en particulier l'absence de coléoptères et de larves d'odonates. A partir de Strasbourg, dans le Rhin canalisé caractérisé par un faible charriage, le fond du fleuve est colonisé par le trichoptère Hydropsyche contubernalis. Cette espèce étend sur les pierres des filets dans lesquels elle intercepte la nourriture apportée par le courant. A signaler également la présence de larves de l'odonate Onychogomphus forcipatus dans ce tronçon du Rhin, une espèce rare localisée notamment dans le sud-ouest de l'Allemagne.
Partie septentrionale du Rhin supérieur

On a détecté au total 101 espèces dans la partie septentrionale du Rhin supérieur. Les espèces les plus abondantes sont celles que l’on retrouve sur l’ensemble du cours du Rhin en grand nombre, comme p.ex. les turbellariés Dugesia tigrina et Dugesia lugubris, ainsi que Dreissena polymorpha et Bithynia tentaculata (figures 9 et 10). Parmi les espèces courantes de ce tronçon du Rhin, on trouve également les microcrustacés Chaetogammarus ischnus et Corophium curvispinum, de même que le gastéropode Physa acuta. À peu près à partir de l’embouchure du Neckar, on note en aval la présence de l’éphéméroptère Ephoron virgo (figures 11 et 12). Cette espèce fouisseuse est à l’origine
de ces célèbres nuées massives du mois d’août dont on retrouve la description dans de nombreux ouvrages. En aval de l’embouchure du Main, on a détecté deux espèces dont les populations se concentrent actuellement dans le Main, l’odonate Gomphus vulgatissimus et le bivalve Sphaerium rivicolae. Depuis l’achèvement en 1992 du canal reliant le Main au Danube, des espèces typiques du Danube rejoignent le Rhin en nombre croissant, comme p.ex. les microcrustacés Dikerogammarus villosus et Dikerogammarus haemobaphes, ainsi que l’isopode Jaera istri (chap. 6).

Seuls quelques exemplaires de Theodoxus fluviatilis, espèce caractéristique du Rhin qui s’étendait jusqu’en 1994 pratiquement sur toute la rive gauche du Rhin supérieur septentrional, ont pu être détectés en 1995 à hauteur de Karlsruhe.

Dans les nombreux anciens bras reliés au Rhin supérieur, on trouve régulièrement les espèces de grands bivalves Unio pictorum, Unio tumidus et Anodonta anatina, le gastéropode Viviparus viviparus et la crevette d’eau douce Athyraephyra desmaresti ; dans les zones de gravier, on détecte de plus en plus souvent la larve de l’éphéméroptère fouisseur Ephemerida glaucaops. Le bivalve Sphaerium solidum, rarement observé dans le Rhin, est également présent dans les bras latéraux caractérisés par des substrats graveleux et un faible courant.

☐ Rhin moyen

La plupart des 70 espèces recensées dans le Rhin moyen sont des espèces communes et abondantes qui colonisent les grands fleuves et sont peu exigeantes quant à la qualité des habitats aquatiques qu’elles occupent. C’est pourquoi la biocénose ressemble ici à celle rencontrée dans la partie septentrionale du Rhin supérieur. Le caractère épiptimal du ce tronçon du Rhin ne se reflète que partiellement dans la zoocénose. On peut citer ici comme représentants de cette faune épiptimal le spécimens isolés de l’éphéméroptère Potamanthus luteus et des trichoptères Silo sp. et Baetis fuscatus. Il est vraisemblable que ces espèces trouvent refuge dans les grands affluents tels que la Lahn, la Wied et l’Ahr. On note également dans le Rhin moyen la présence régulière, bien qu’en faible densité, des coléoptères Elmis mauguetii et Limnus sp.

En aval de la Moselle, on note la présence de deux grands bivalves, Unio crassus et Pseudanodonta complanata, qui n’ont pas pu être détectés à d’autres endroits du Rhin. À l’inverse, les populations de Theodoxus fluviatilis qui s’étendaient entre 1988 et 1994 de la Moselle à Cologne, ont pratiquement disparu en 1995. Comme pour la partie septentrionale du Rhin supérieur, la cause de cette disparition n’a pas pu être déterminée jusqu’à présent.
Rhin inférieur

Rhin deltaïque

Le substrat sablonneux du Rhin deltaïque se distingue principalement par une faune abondante en chironomides (40 espèces, dont l’espèce potamale typique *Kloosia pusilla*) et en oligochètes (21 espèces). Alors que les zones à faible courant sont principalement colonisées par les tubificidés, on trouve dans le chenal de navigation des enchytraïdiés ainsi que *Propappus volki*, espèces spécifiques de ces habitats en mesure d’occuper des biotopes aux conditions extrêmes caractérisés par un fort charriage. On note également dans le sable la présence de nombreuses espèces de petits bivalves (*Pisidium casertanum*, *Pisidium henslowanum*, *Pisidium moitesserianum*, *Pisidium nitidum*, *pisidium subtruncatum*, *pisidium supinum*). Sur le substrat dur, on retrouve dans le Rhin deltaïque une biocénose analogue à celle du Rhin inférieur, où l’on rencontre notamment fréquemment *Corophium curvispinum* et un ubiquiste d’eau douce de la famille des chironomides, *Dicrotendipes nervosus*.

Avec des concentrations de sels variant en permanence, la zone d’eau saumâtre en aval du Rhin deltaïque confronte les organismes à de dures conditions d’osmorégulation, ce qui explique pourquoi elle n’est peuplée que d’un nombre restreint d’espèces aux propriétés euryhalines extrêmes. On rencontre ainsi les espèces typiques des zones saumâtres telles

Fig. 13 crevette d’eau douce *Palaemon longirostris*
que *Corophium lacustre*, *Corophium volutator* et *Corophium multisetosum*, ainsi que le petit crustacé marin *Balanus improvisus*. On constate pour ce dernier une forte augmentation des populations à mesure qu’augmentent les gradients de salinité. Le crustacé *Rhithropanopeus harrisi* et la crevette *Palaemon longirostris*, également des espèces vivant en eau saumâtre, remontent le fleuve sur de grandes distances. On a ainsi détecté la présence de *Rhithropanopeus harrisi* jusqu’à Rees et celle de *Palaemon longirostris* jusqu’à Nimègue, c’est-à-dire à plus de 150 km de l’embouchure (figures 13 et 14).

6 Evolution de la biocénose du Rhin

Une description historique de l’évolution de la biocénose ne peut fournir de données statistiques exactes mais permet cependant de reconnaître clairement les tendances. On constate ainsi que l’évolution à long terme de la biocénose est étroitement liée à la pollution du Rhin par des substances nuisibles (figure 15). En se basant sur les listes d’espèces de différents auteurs, on arrive à un total d’env. 165 espèces présentes au début du siècle, et ce uniquement pour le Rhin navigable entre Rheinfelden et Pannerden. Parallèlement à la pollution croissante du Rhin due aux rejets d’eaux usées et à la baisse de la teneur d’oxygène qui y est liée, on observe une chute brutale du nombre d’espèces du macrozoobenthos, notamment entre le milieu des années 50 et le début des années 70, touchant tout particulièrement les populations d’insectes. Sur plus de 100 espèces recensées au début du siècle, seules 5 espèces subsistaient en 1971.
A partir du milieu des années 70, un tournant est atteint. Grâce à l’amélioration de l’oxygénation consécutive à la construction de stations d’épuration industrielles et urbaines, on observe à nouveau une augmentation de la diversité des espèces sur le Rhin. Entre-temps, l’inventaire des espèces présentes dans le Rhin navigable a atteint le nombre de 155 espèces (sélection d’espèces animales, le nombre total d’espèces s’élève à plus de 400 si l’on détermine les vers et les chironomides).

De nombreuses espèces considérées un temps comme éteintes ou fortement déclinées dans le Rhin sont à nouveau solidement implantées dans de larges tronçons du Rhin (p.ex. *Ephoron virgo*, *Heptagenia sulurea*, *Psychomyia pusilla*, *Aphelocheirus*, *aestivalis*, *Unio tumidus* etc.).

Ces réapparitions ne doivent cependant pas faire oublier que de nombreuses espèces d’insectes font encore défaut, p.ex. dans le groupe des plecoptères. Jusqu’à aujourd’hui, la présence d’*Oligoneuriella rhenana* (figure 16), un éphéméroptère typique du Rhin, qui tient son nom des peuplements massifs qui colonisaient initialement le Rhin, n’a toujours pas été redécelée dans le Rhin. Bien que cette espèce soit présente dans les affluents du Rhin, elle ne trouve pas dans le Rhin même les habitats appropriés à son développement. On a pu constater que la biocénose du Rhin restait encore très fragile à l’exemple des populations de *Theodoxus fluviatilis* (figure 17), une espèce qui, partant de l’embouchure de la Moselle, s’était étendue dans la partie septentrionale du Rhin supérieur, le Rhin moyen et le sud du Rhin inférieur entre 1988 et 1994, et qu’il n’a pas été possible de détecter en 1995 (figure 18), sans qu’on puisse en expliquer la cause jusqu’à présent.

Fig. 16 éphéméroptère *Oligoneuriella rhenana*

Fig. 17 gastéropode *Theodoxus fluviatilis*
La biocénose actuelle du Rhin n’est pas identique à celle de 1900. Les modifications de la qualité des eaux, les mesures de génie hydraulique, la navigation, de même que l’immigration de nouvelles espèces animales (nézoaires), ont entraîné une restructuration partielle de la biocénose du Rhin. Les nézoaires proviennent de régions aux conditions biogéographiques différentes de celles de l’hydrologie du Rhin et ont rejoint celui-ci par le biais des canaux, de la navigation, ou ont été déversées dans le Rhin. Ces apports ont également élargi dans les années 90 l’éventail des espèces présentes dans le Rhin. Alors que les
Certaines espèces immigrées se reproduisent à très grande vitesse. *Dikerogammarus villosus* a envahi le Rhin de l'embouchure du Main jusqu'à Rotterdam en l'espace de deux ans et *Corbicula* a remonté le Rhin depuis l'embouchure jusqu'en amont de Bâle en six ans pour devenir à certains endroits du Rhin le bivalve prédominant (figures 20 et 21). Si l'accroissement de *Corbicula* n'a pas jusqu'à présent de conséquences manifestes sur le reste de la biocénose, la propagation de *Corophium curvispinum* par contre a entraîné une baisse sensible des populations de dreissènes polymorphes *Dreissena polymorpha* (figures 22, 23 et 24). Ces deux espèces revendiquent en effet le même type d'habitat (pierres fixes). Néanmoins, il n'est jamais encore arrivé qu’une espèce typique du Rhin disparaisse entièrement sous l’impact d’espèces néozoaires.
7 Mesures visant à améliorer la biocénose

L’augmentation rapide du nombre des espèces laisse espérer un rétablissement progressif de la biocénose du Rhin. Dans le but d’améliorer les conditions de vie de la biocénose, il convient de prendre des mesures visant à améliorer la structure du biotope et de la qualité de l’eau:

☐ Amélioration de la structure du biotope

Le biotope d’un cours d’eau est composé de sous-biotopes de différentes structures peuplés par différentes communautés d’organismes. Sous l’influence du courant, une mosaïque dynamique de sous-biotopes à dominance lénite ou litoïque se constitue, en fonction principalement de la nature du substrat (fin ou grossier) en présence. Un ensemble d’habitats diversifiés prend forme et développe un modèle de structure avec une répartition également diversifiée de conditions d’alimentation. Les biocénoses qui y vivent sont très différentes et le nombre des espèces communes est faible. C’est pourquoi la diversité des espèces d’un fleuve se fonde essentiellement sur la diversité de sa structure morphologique, comme on peut le constater de façon exemplaire dans la composition très différente des peuplements du Vieux-Rhin et du Grand Canal d’Alsace (cf. figure 8).

Il convient de prendre sur le Rhin les mesures qui s’imposent pour protéger ou restaurer les structures et les sous-biotopes subordonnés à la dynamique fluviale naturelle. Il faut également assurer la libre circulation des organismes dans les affluents pour permettre un échange naturel des espèces faunistiques et pour conserver les affluents comme biotopes de refuges potentiels. Ils convient d’éviter que les zones riveraines et le fond du fleuve ne soient trop sollicités par les interventions mécaniques dues à la navigation et au brassage fréquent des couches du fond du cours que provoque le resserrement du profil transversal du Rhin. Grâce à ces mesures, on pourra rendre les habitats plus attrayants pour les espèces macrozoaires et on favorisera l’implantation de plantes aquatiques, qui sont un habitat précieux pour les micro-organismes et font cruellement défaut à l’heure actuelle sur de vastes tronçons du Rhin.

Afin d’améliorer les conditions de vie des macrozoaires dans le Rhin, il convient de prendre autant que possible les mesures suivantes chaque fois que l’opportunité s’en présente:
* protéger les actuelles structures proches de l'état naturel

* améliorer le libre passage linéaire
 - mettre en place, dans le bassin versant également, des rivières artificielles ou autres dispositifs d'aide à la migration appropriés sur les barrages
 - améliorer le raccordement morphologique des affluents au cours principal

* restaurer la dynamique des zones alluviales
 - rétablir une connexion aussi naturelle que possible entre les anciens bras et le cours principal
 - réacter et conserver les anciens bras
 - mettre à disposition des espaces supplémentaires d'expansion des crues
 - aménager des biotopes secondaires proches de l'état naturel (lac de dragage)

* améliorer le fond du fleuve en tant qu'habitat
 - mettre en place des annexes hydrauliques alimentées en eau et fermées à la navigation

* renforcer la diversité structurelle des zones riveraines
 - retirer les aménagements solides des rives là où ceci est possible
 - renforcer l'aménagement de rives de gravier en pente douce

☐ Améliorations de la qualité de l'eau et des matières en suspension

Malgré les progrès accomplis pour assainir les eaux du Rhin au cours des dernières décennies, il est nécessaire d'accroître les efforts visant à obtenir une meilleure qualité de l'eau et des matières en suspension, pour améliorer les conditions de vie des espèces macrozoaires dans le Rhin. Les mesures suivantes sont requises:

* réduire la pollution quantitative des matières en suspension (impact négatif sur la structure du substrat et sur les interstices du fond du fleuve, ainsi que sur les conditions de luminosité)

* réduire les apports de substances nuisibles (accumulation de substances nuisibles dans les organismes)

* réduire les flux de nutriments (eutrophisation des anciens bras)
* réduire la pollution thermique (qui favorise le développement d'espèces thermophiles et la formation de cycles évolutifs atypiques)

* contrôler les problèmes d'huile dus au trafic fluvial (lorsqu'ils sont pollués par de l'huile, les substrats de peuplement sont rendus inutilisables pour les micro-organismes, notamment en zone riveraine)

□ Suivi des résultats

On peut mesurer le succès des mesures d'assainissement mises en œuvre au retour d'espèces qui constituaient à l'origine la biocénose du Rhin. Les espèces les plus adaptées pour ce suivi des résultats sont les espèces typiques du Rhin parmi les groupes des mollusques, plécoptères, éphéméroptères, hétéroptères,odonates et trichoptères.

L'annexe 2 présente une sélection d'espèces dont la réapparition, la propagation ou la reproduction (même lorsqu'il ne s'agit que d'une seule espèce) peuvent être interprétées comme un signal positif du développement d'une biocénose typique du Rhin.
8 Résumé

Dans le cadre du Programme d'Action Rhin de la CIPR, les experts ont recensé en 1990 et 1995 les populations de macrozoaïres (ensemble des microorganismes benthiques) présentes dans le Rhin entre le lac de Constance et l'embouchure de la mer du Nord. Les études ont été réalisées par les services techniques compétents des États riverains du Rhin à l'aide de plongeurs, d'une cage à plongeur et de grappins et depuis la rive. Les objectifs poursuivis étaient de recenser systématiquement les macroinvertébrés du Rhin, de procéder à une évaluation qualitative et quantitative des populations en se basant sur les informations relatives à l'évolution de la biocénose dans le temps, à la dynamique de développement de certaines espèces à long terme et à l'immigration d'espèces néozoaires.

Plus de 200 espèces ou taxons supérieurs ont été recensés au total. La plupart de ces espèces sont communes, présentent une large valence écologique et colonisent de grandes parties du Rhin. Les densités d'individus varient fortement en fonction du tronçon rhénan, de leur localisation sur le profil transversal et des conditions saisonnières et se situent entre 0 et plusieurs dizaines de milliers d'individus par m².

Une description historique de l'évolution de la biocénose ne peut fournir de données statistiques exactes mais permet cependant de reconnaître clairement les tendances. En se basant sur les listes d'espèces de différents auteurs, on arrive à un total d'env. 165 espèces présentes au début du siècle, et ce uniquement pour le Rhin navigable entre Rheinfelden et Panzerden. Parallèlement à la pollution croissante du Rhin due aux rejets d'eaux usées et à la baisse de la teneur d'oxygène qui y est liée, on observe une chute brutale du nombre d'espèces du macrozoobenthos, notamment entre le milieu des années 50 et le début des années 70. A partir du milieu des années 70, un tournant
est atteint. Grâce à l’amélioration de l’oxygénation consécutive à la construction de stations d’épuration industrielles et urbaines, on observe à nouveau une augmentation de la diversité des espèces sur le Rhin. Depuis, l’inventaire des espèces présentes dans le Rhin navigable a atteint approximativement 155 espèces.

La biocénose actuelle du Rhin n’est pas identique à celle de 1900. De nombreuses espèces proviennent de régions aux conditions biogéographiques différentes de celles de l’hydro-système du Rhin et ont rejoint celui-ci par le biais des canaux, de la navigation, ou ont été déversées dans le Rhin. Ces apports ont également élargi dans les années 90 l’éventail des espèces présentes dans le Rhin. Alors que les bivalves *Corbicula fluminea* et *Corbicula fluminalis*, sont originaires de l’Asie du sud-est, les microcrustacés *Corophium curvispinum*, *Dikerogammarus villosus* et *Dikerogammarus haemobaphes*, tout comme l’isopode *Jaera istori*, sont initialement localisés autour de la mer Noire. Certaines espèces immigrées se reproduisent à très grande vitesse. Si l’accroissement du bivalve *Corbicula* n’a pas jusqu’à présent de conséquences manifestes sur le reste de la biocénose, la propagation de *Corophium curvispinum* par contre a entraîné une baisse sensible des populations de dreissènes polymorphes *Dreissena polymorpha*. Ces deux espèces revendiquent en effet le même type d’habitat composé de pierres fixes.

L’augmentation rapide du nombre des espèces laisse espérer un rétablissement progressif de la biocénose du Rhin. Des mesures visant à améliorer la structure du biotope, la qualité de l’eau et celle des matières en suspension sont proposées afin d’améliorer durablement les conditions de vie de la biocénose.
Annexe 1

Macroinvertébrés dans le Rhin en 1995

X = espèce détectée en 1995 dans le tronçon du Rhin concerné, * = espèce non détectée en 1995. D'après des données plus anciennes, la présence de cette espèce est certaine ou très probable; hachures grises = groupe faunistique traité à part dans le tronçon néerlandais du Rhin.

HR1 = haut Rhin: du lac de Constance à l'embouchure de l'Aare pt. km 28 – 102
HR2 = haut Rhin: de l'embouchure de l'Aare à Bâle pt. km 102 – 172
OR1H = Rhin supérieur: de Bâle à Neubourg (cours principal) pt. km 172 – 355
OR1R = Rhin supérieur: de Bâle à Marlen (Vieux-Rhin) pt. km 172 – 291
OR2 = Rhin supérieur: de Neubourg à Bingen pt. km 355 – 530
MR = Rhin moyen: de Bingen à Bonn pt. km 530 – 651
NR1 = Rhin inférieur: de Bonn à Bimmen/Lobith pt. km 651 – 865
NR2 = Rhin deltaïque: de Bimmen/Lobith à l'embouchure pt. km 865 – 1032
<table>
<thead>
<tr>
<th>tronçons du Rhin</th>
<th>HR1</th>
<th>HR2</th>
<th>OR1H</th>
<th>OR1R</th>
<th>OR2</th>
<th>MR</th>
<th>NR1</th>
<th>NR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRICLADIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendrocoelum lacteum (O.F.M.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dugesia gonocephala (DUGES)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dugesia lugubris-Gruppe (O. SCHM.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dugesia polychra (SCHMIDT)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Dugesia tigrina (GIR.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Planaria torva (MÜLL.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycelis sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycelis tenuis IJIMA</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEMATHELMINTHES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merminitidae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nematoda spp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>OLIGOCHAETA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aulodrilus pigueri KOES</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aulodrilus plurisetus (PIG.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dero digitata (MÜLL)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Branchiura aoverbyi BRED.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criodrilus fasciarum (HOFF.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eiseniella tetraedra (SAV.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enchytraeidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heplotaxa gordianus (HART)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnodrilus claperondeanus RAT.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbrinireus hoffmanni CLAP.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnodrilus udekemanus CLAP.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbricidae</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbriculus</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naïdidae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nais bretacheri MICHA.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nais ingleus MÜLL.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peloscolex sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propisicus sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamothrix molitvaneri (VE. & MR.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamothrix goudovski (HRABE.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psammoruncinae barbatum (GRUBE)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiastridius multisetosus</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specaria joanii (VE.J.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stylochus heringianus CLAP.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubificidae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncinaria uncinata OERSTED</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vajdovskyella intermedia PIG.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIRUDINEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cystobranchus respians (TROSH.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dina lineata (O.F.M.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dina punctata</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erpobdella sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erpobdella octoculata (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Erpobdella nigricollis (BRAN.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erpobdella testacea (SAV.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossiphonia sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossiphonia complanata (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glossiphonia heteroclite (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>tronçons du Rhin</td>
<td>HR1</td>
<td>HR2</td>
<td>OR1H</td>
<td>OR1R</td>
<td>OR2</td>
<td>MR</td>
<td>NR1</td>
<td>NR2</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Haemopis sanguisuga (L.)</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helodella stagnalis (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemiclepis marginata (O.F.M.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscicola sp.</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscicola geometra (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acroloxus lacustris (L.)</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ancylus fluviatilis (O.F.M.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bathymophalus contortus (L.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia laevis (SHEEP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bithynia tentaculata (L.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyraulus albus (O.F.M.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithoglyphus neticoideus (GRAY)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lymnaea stagnalis L.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physella acuta (DRAP.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planorbidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planorbis planorbis (L.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamopyrgus antipodarum (E.A. SMITH)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radix auricularia (L.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radix ovata (DRAP.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radix peregra (O.F.M.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Segmentina nitida MÜLL.</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stagnicola corvus GMELIN</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theodoxus fluviatilis (L.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvata cristata (O.F.M.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvata piscinalis (O.F.M.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valvata pulchella STUDER</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viviparus viviparus (L.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMELLIBRANCHIATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodonta anatina (L.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anodonta cygnea (L.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corbicula sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corbicula fluminea (MÜLL.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corbicula fluminalis (MÜLL.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dreissena polymorpha (PALL.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudanodonta complanata (ROSS.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrum exuberrans (POL.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrum hemslownckii (SHEEP.)</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrum melissenterium (PAL.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrum nitidum JENYS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrum subtruncatum (MALMI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilastrumuguinum (SCHMIDT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerium sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerium corneum (L.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerium rivicolra (LAMARCK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerium solitum (NORM.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unio crassus RHILL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unio pictorum (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tronçons du Rhin</td>
<td>HR1</td>
<td>HR2</td>
<td>OR1H</td>
<td>OR1R</td>
<td>OR2</td>
<td>MR</td>
<td>NR1</td>
<td>NR2</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Unio tumidus (PHILL.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HYDRACARINA</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leberthia sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRUSTACEA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asellus aquaticus (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Atvasephyra desmaresti (MILL.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balanus improvisus (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetogammarus ischnus STEBBING</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corophium curvispinum (SARS)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corophium lacustre (SARS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corophium multisestum STOCK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corophium volutator (PALLAS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dikerogammarus haemobaphes (EICHW.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dikerogammarus villosus SOV.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriocher sinensis (H.M.F.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Echinogammarus berlioni (CATTAL)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus fossarum (KOCH)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus pulex (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus roeseli (GERV.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gammarus tigrinus (SEX.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jaera istri (VEUILLE)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orconectes limosus (RAFI.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palaemon longirostris (EDW.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proasellus coxalis (DOLLFL.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proasellus cavaticus (LEIDIG)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proasellus meridianus (RAC.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhithropanopeus harrisi (GOULD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPHEMEROPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetisidae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis fuscatus (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis lutheri M.-L.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis muticus L.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis rhodani PICT.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis vernus CURT.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis spp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis lucitosa (BURICE)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis macrura STEPH.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caenis pusilla NAVAS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centroptilum luteolum MüLL.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloeon dipterum L.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecdyonurus sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecdyonurus torrentis KIMM.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecdyonurus picteti (M.-D.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epeorus sylvicola PICT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella danica MüLL.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella glaucops (PICT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella ignita (PCDA)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella major STEPH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemerella muconata BGTSS.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tronçons du Rhin</td>
<td>HR1</td>
<td>HR2</td>
<td>OR1H</td>
<td>OR1R</td>
<td>OR2</td>
<td>MR</td>
<td>NR1</td>
<td>NR2</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Ephoron virgo (OL.)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haplogryllus sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habroptoides confusa SART. & JAC.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptagenia sulphures (MÜLL.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamantus lutes (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhithrohena semicolorata (CURT.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLECOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphinemura sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoperla sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoperla cf. oylepis DESP.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctra sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctra fusca (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euleuctra geniculata STEPH.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemouridae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nemoura sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlodes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protonemura sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODONATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopteryx splendidus (HARR.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lestes viridis LIND.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corduliidae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coenagrionidae</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphidae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gomphus vulgatissimus SELYS</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onychogomphus forcatus (L.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platycnemis pennipes (PALL.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zygoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HETEROPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apherocochirus aestivus (F.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corixa sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gerris sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrometra stagnorum (L.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micronecta spp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microwetta sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLEOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brychius sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drytieae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elmis sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elmis annae P. MÜLL.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elmis maugeri LAT.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esolus sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyriodidae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halplis sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helodes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraena sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laccophilus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnus sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnus volckmani PANZ.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macronychus quadrirugulosus M.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tronçons du Rhin</td>
<td>HR1</td>
<td>HR2</td>
<td>OR1H</td>
<td>OR1R</td>
<td>OR2</td>
<td>MR</td>
<td>NR1</td>
<td>NR2</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Orectochilus villosus MÜLL.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oulimus sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oulimus tuberculatus P. MÜLL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platambus sp.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Platambus maculatus (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamonectes depressus (FABR.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riolus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riolus cupreus P. MÜLL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Riolus subviolaceus P. MÜLL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenelmis sp.</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stenelmis canalicula GYLL.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEGALOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sialis sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sialis lutaria (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sialis nigripes RAMB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLANIPENNIA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisyra sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agapetus fuscipes CURT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrylea sp.</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agrylea multipunctata (Mcl.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anablatta nervosa (CURT.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athripsodes sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachycentrus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceraclea sp.</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceraclea albimacula RAMB.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceraclea alboguttata (HAGEN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceraclea annulicornis (RAMB.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceraclea dissimilis (STEPH.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheumatopsyche lepida (CURT.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cynus trimaculatus (CURT.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecnomus tenellus (RAMB.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goeridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goerea pilosa (FABR.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche bulgaromanorum MAL.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche contubernalis (Mcl.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche exocellata DUF.</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche fulvipes CURT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche pellucidula (CURT.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydropsyche siltaii DÖHLER</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrotilia spp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrotilia sparsa (CURT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidostoma hirtum (FABR.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leptoceridae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limnephilidae</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mystacidae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mystacidae azurae (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neureclipsis bimaculata (L.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecetis sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecetis lacustris (PICT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oecetis notata (RAMB.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tronçons du Rhin</td>
<td>HR1</td>
<td>HR2</td>
<td>OR1H</td>
<td>OR1R</td>
<td>OR2</td>
<td>MR</td>
<td>NR1</td>
<td>NR2</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Deserts testaceus (CURT.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Othotrichius sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polycentropus flavomaculatus (PICT.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychomyia pusilla (FABR.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyacophila sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhyacophila dorsalis (CURT.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericostomatidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sericostoma sp.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silo sp.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setodes sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Setodes punctatus (FABR.)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinodes weeneri (L.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthomyiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Athericidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atherix ibia</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blephariceridae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloropidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanytarsidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricotopus bicornutus (MEIG.)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricotopus intersectus (STAEG.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricotopus sylvanus (FABR.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricotopus triangulatus MAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricotopus viemensus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laphroptus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanisialis bicolour (Zett.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psectrocladius aoridalus - Gr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psectrocladius sordidalus/limbatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodocricotopus chalybeatus (EDW.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheopericlitus fascipes-Gr.</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syruarthridius emmerviens (KIEFF.)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypticus ef. varralli (EDW.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomini</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomus nudiventris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptochironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryptochironomus rostratus KIEFF.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmochironomus vulneratus (Zett.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioctotripus nervosus (STAEG.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endochironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endochironomus albipennis (MEIG.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyptotendipes pallens (MEIG.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyptotendipes paripes (EDW.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmathyje sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klooule pusilla (L.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parachironomus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tronçons du Rhin</td>
<td>HR1</td>
<td>HR2</td>
<td>OR1H</td>
<td>OR1R</td>
<td>OR2</td>
<td>MR</td>
<td>NR1</td>
<td>NR2</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Parechironomus gr. viticulosus (GOETGH.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parechironomus longifolius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parephaxenocladus implexus (WALK.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratendipes sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paratendipes intermedius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypleuria sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polypleuria scalarum (SCHRANK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xenochironomus xenolabis KIEFF.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanysterae x.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladotanytarsus mancus gr.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheotanytarsus sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanypheae sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empididae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephydryphiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonidae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieranota sp.</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psychodidae</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhagionidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simuliidae</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Simulium galericum EDW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Williamia lineata (MEIG.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streblomyiidae</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tabanidae</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipulidae</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipula sp.</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPONGILLIDAE</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ephydatia fluviatilis (LJ)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephydatia mullerl (LIEBK.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongia sp.</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongia fragilis (LEIDY)</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spongia laocutris (L.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trochospongilla horrida WELTN.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRYOZOA</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericellia sulfata (BLUMENB.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatella sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatella amarginata (ALLM.)</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatella fructicos (ALLM.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plumatella repens (L.)</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HYDROZOA</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordylaphora capsa (FALL.)</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydra sp.</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 2

Espèces sélectionnées dont la réapparition ou la propagation signalent une amélioration de la biocénone du Rhin

Légende: 1 = détection d’un seul exemplaire, 2 = faible, 3 = de faible à moyenne, 4 = moyenne, 5 = de moyenne à abondante, 6 = abondante, 7 = très abondante, † = disparue dans le Rhin, rouge = biotope de refuge inconnu dans le bassin du Rhin, * = présence récente incertaine, noir = espèce de tous temps absente du tronçon du Rhin concerné

HR1 = haut Rhin: du lac de Constance à l’embouchure de l’Aare pt. km 28 – 102
HR2 = haut Rhin: de l’embouchure de l’Aare à Bâle pt. km 102 – 172
OR1H = Rhin supérieur: de Bâle à Neubourg (cours principal) pt. km 172 – 355
OR1R = Rhin supérieur: de Bâle à Marlen (Vieux-Rhin) pt. km 172 – 291
OR2 = Rhin supérieur: de Neubourg à Bingen pt. km 355 – 530
MR = Rhin moyen: de Bingen à Bonn pt. km 530 – 651
NR1 = Rhin inférieur: de Bonn à Bimmen/Lobith pt. km 651 – 865
NR2 = Rhin deltaïque: de Bimmen/Lobith à l’embouchure pt. km 865 – 1032
<table>
<thead>
<tr>
<th>tronçons du Rhin</th>
<th>HR1</th>
<th>HR2</th>
<th>OR1H</th>
<th>OR1R</th>
<th>OR2</th>
<th>MR</th>
<th>NR1</th>
<th>NR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GASTROPODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithoglyphus naticoides (GRAY)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theodoxus fluviatilis (L.)</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viviparus viviparus (L.)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAMELLIBRANCHIATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisidium amphicola (O.F.M.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisidium squamum (SCHMIDT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pisidium moitesserianum PALA.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudandonta complanata (ROSS.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerioida rivicola (LAMARCK)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaerium solidum (NORM.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unio crassus PHILL.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>EPHEMEROPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baetis fuscus (L.)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Caenis horaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecdyonurus sp.</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephemera vulgata L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ephoron virgo (OL.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Heptagenia longicuada STEPH.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligoneuriella rhenana IMH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palingenia longicuada OL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potamantius luteus (L.)</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prospoleptus toliaeaeum FOUR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhithrogena besidensis A.T.& S.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLECOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bessolus imhoffi Prot.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachyptera trisulcata PICT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isogenius nebulosus NEW.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoperla grammatica PODA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoperla obscura ZETT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leuctra fusca (L.)</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Euleuctra geniculata STEPH.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merthoidea selwyni PICT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perlodes microcephalus (PICT.)</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ODONATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calopteryx splendens (HARR.)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HETEROPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apherocirus aestivalis (F.)</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TRICHOPTERA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachypodius spinulipenis (KLAP.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogon albofasciatus (HAGEN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceratopogon dievalis (STEH.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choristoperthella villosa FABR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choristoperthella lepidoptera PICT.</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chironomus marina L.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glossolepis boltoni CURT.</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochares antennennis (CURT.)</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrochares pallidula (CURT.)</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Itchythrix lamellaris EATON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Micrathena setiferum PICT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molanna angustata CURT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligosoma maculatum FOUR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhynchophila passoni MCL.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhynchophila triaria PICT.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silo pallipes FABR.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silo picus BRAUER</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Commission Internationale pour la Protection du Rhin (CIPR)
secrétariat technique et scientifique
Postfach 309
D-56003 Koblenz
téléphone: (02 61) 1 24 95
téléfax: (02 61) 3 65 72

Photos: figure 1: P. Rey, Konstanz; autres photos: Bundesanstalt für Gewässerkunde, Koblenz
Date de publication: septembre 1996

Impression: Druckerei E. Kurz & Co, Stuttgart

Rapport du Groupe de travail 'Ecologie' avec le concours des experts des services associés:
Rédaction: Dr. Franz Schöll, Bundesanstalt für Gewässerkunde, Koblenz
Traduction: Isabelle Traue, Dominique Falloux